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Learning Chern Numbers of Topological Insulators with Gauge Equivariant Neural
Networks
LONGDE HUANG
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Equivariant network architectures are a well-established tool for predicting invari-
ant or equivariant quantities. However, almost all learning problems considered in
this context feature a global symmetry, i.e. each point of the underlying space is
transformed with the same group element, as opposed to a local “gauge” symme-
try, where each point is transformed with a different group element, exponentially
enlarging the size of the symmetry group. Gauge equivariant networks have so far
mainly been applied to problems in quantum chromodynamics. Here, we introduce a
novel application domain for gauge-equivariant networks in the theory of topological
condensed matter physics. We use gauge equivariant networks to predict topological
invariants (Chern numbers) of multiband topological insulators. The gauge symme-
try of the network guarantees that the predicted quantity is a topological invariant.
We introduce a novel gauge equivariant normalization layer to stabilize the training
and prove a universal approximation theorem for our setup. We train on samples
with trivial Chern number only but show that our models generalize to samples with
non-trivial Chern number. We provide various ablations of our setup. Our code is
available at https://github.com/sitronsea/GENet/tree/main.

Keywords: Geometric Deep Learning, Gauge Equivariant Networks, Condensed-
Matter Physics.
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1
Introduction

1.1 Overview
The mathematical fields of geometry and topology provide a rigorous language for
describing the shape of data, capturing information from local properties such as cur-
vature and dimensionality to global characteristics such as connectedness or genus.
In practical machine learning tasks, classical methodology of treating samples as
vectors in a flat Euclidean space tends to break down as the data grows in com-
plexity[1]. Researchers therefore move to analyze them as a complex subspace, and
take advantage of its topological and geometric features to conduct more efficient
classifications and studies.

Geometric deep learning, a subfield of machine learning emerge to this end. It uti-
lizes the geometric and topological in complex data to construct more efficient neural
network architectures[2]. This approach has been successfully applied in a variety
of domains, from medical imaging [3] to high-energy physics [4] and quantum chem-
istry [5]. In particular, machine learning for quantum physics has grown explosively
over the last decade, with applications in condensed matter physics, materials sci-
ence, quantum information and quantum computing [6, 7, 8, 9]. Within this broad
area, we focus on machine learning of topological states of matter.

Topology, a branch of mathematics, focuses on the characteristics of objects that are
preserved under a continuous transformation. For instance, a donut is topologically
equivalent to a coffee cup, but not to a ball, based on the topological characteristic
of genus (the number of holes). Topological insulators are materials whose interior
is insulating yet whose surface or boundary supports robust conduction. This be-
havior arises from the different topologies of the electronic band structures inside
and outside of the material. The topologies are characterized by quantities which
do not change under continuous deformations respecting the underlying system’s
physical symmetries; these are known as topological invariants.

The study of topological insulators, a class of materials which has been one of the
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Chapter 1. Introduction

main areas of interest in condensed matter physics over the last two decades [10,
11], with a broad range of applications, including spintronics and magnetoelectron-
ics [12], photonics [13], quantum devices [14], and quantum computing [15, 16, 17],
and there has been a lot of attempts to explore it with deep neural networks. Early
work includes Carrasquilla & Melko [18], who used supervised learning on small
CNNs for the Ising lattice gauge theory, and van Nieuwenburg et al. [19], who de-
veloped an unsupervised “learning by confusion” method to study phase transitions
including topological order in the Kitaev chain. Other unsupervised approaches em-
ploy diffusion maps [20] and topology-preserving data generation [21]. Of particular
relevance are studies that used CNNs and supervised learning to predict U(1) topo-
logical invariants [22, 23]; subsequent work extended this to unsupervised settings
with topology-preserving data augmentations [24, 25].

Previous studies on topological insulators are limited to single band insulators. In
contrast, our focus will be on multi-band topological insulators, in which several
wave functions are combined into a vector. Previous works could construct deep
learning systems which predict Chern numbers for materials with only one filled
band [23, 24]. Perhaps surprisingly, these models fail to learn Chern numbers for
higher-band systems, pointing to a fundamental challenge in the multi-band regime.
In contrast, our model is able to predict Chern numbers of materials with at least
seven filled bands.

We identify the gauge symmetry of the system as the central reason for the failure
of traditional approaches in the high-band setting. Over a discretized lattice, the
physical feature of the material could be represented with a collection of unitary ma-
trices at each lattice site. Usual group equivariant networks N : X → Y satisfy the
constraint N (ρX(g)x) = ρY (g)N (x) ∀g ∈ G with symmetry group G and representa-
tions ρX,Y on the input- and output spaces, respectively. In contrast, a gauge equiv-
ariant network satisfies a much stronger condition in which the group element g can
depend on the input x: N (ρX(g1)x1, . . . , ρX(gn)xn) = (ρY (g1)y1, . . . , ρY (gn)yn)⊤. In
our case, the input space X is the Fourier transform of the position, the so-called
Brillouin zone of the material, and G = U(N) for a system with N filled bands. In
this context, Chern number is invariant under any local transformation via U(N)-
group action

Wx ∼ Ω†
xWxΩx

Where N is the number of filled bands that share the same eigenvalue. When N > 1,
the transformation becomes non-abelian (non-commutative), and this mathematical
difficulty implies the need of a tailored structure for this task.

Group equivariant neural networks for continuous (Lie) groups have been widely
explored. Classical methodology includes the work of Finzi et al. [26], which intro-
duced an architecture that preserves Lie group equivariance by directly solving the
constraints of the underlying Lie algebra, and Wang et al. [27], which constructed
an equivariance relaxation mechanism for 2D symmetry. More specifically, orthog-
onal group equivariance, which is a real-valued counterpart of the unitary group
equivariance considered in our work, has also been tackled, such as the architecture
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Chapter 1. Introduction

introduced by Lim et al. [28], which directly operates on the eigenvalues of matrices,
and Lawrence et al. [29], which generalized the method of group convolution with
a uniform sampling over the group. However, they are not applicable for the site-
dependent U(N) transformations, as the gauge group’s exponential growth renders
direct application infeasible.

We instead propose to use a gauge-equivariant network for learning topological in-
variants such as the Chern number. Gauge equivariant networks have been studied
in two main settings. First, the gauge symmetry concerns local coordinate changes
in the domain of the feature maps [1, 30, 2]; models respecting this symmetry
were introduced in [31, 32]. Second, relevant for lattice quantum chromodynamics
(QCD), the gauge transformations act on the co-domain of the feature maps. Ap-
plications in lattice QCD include gauge-equivariant normalizing flows [33, 34, 35,
36, 37] and neural-network quantum states [38]. In contrast, our model builds on a
gauge-equivariant prediction network developed for lattice QCD [39]. This is a novel
application for gauge equivariant neural networks. In particular, we cast the prob-
lem at hand in a form in which we can use an adapted version of the Lattice Gauge
Equivariant Convolutional Neural Networks (LGE-CNNs) [39] to learn multiband
Chern numbers.

1.2 Summary of Results
In this work, we develop GEBLNet, a U(N)-gauge–equivariant neural network archi-
tecture for predicting Chern numbers of multiband topological insulators. The model
operates locally on Wilson loops, is trained end-to-end with a mixed global and
standard deviation loss, and is theoretically guaranteed to learn any gauge-invariant
topological characteristics. Meanwhile, we design tailored metrics to evaluate pre-
diction accuracy, robustness, and scalability. Our investigation reveals several re-
markable properties of our network in the context of learning:

Model level results.

(1) A stack of Gauge-Equivariant Bilinear Layers (GEBL) equipped with our novel
trace normalization layer yields stable training even for 7-band systems, where
a conventional ResNets diverge.

(2) A purely local kernel (convolution size 0) is sufficient; adding spatial kernels
seldom improves and may degrade accuracy, illustrating the dominance of in-site
information over inter-site coupling.

(3) Our model could be generalized to multiband systems with a higher spatial
dimensions, and have the potential to learn higher order Chern numbers in a
significantly more complicated setting.

Theory–level results

3



Chapter 1. Introduction

(1) We prove a universal approximation theorem showing that GEBL stacks can
approximate all compact group invariant functions to arbitrary precision.

(2) Utilizing the spectral-orbit decomposition U(N)/Ad ≃ U(1)N/SN , we derive
an efficient diagonal-orbit sampler that simplify training data generation, while
preserving a uniform distribution on equivalence classes.

Empirical results

(1) On 5×5 lattices with N = 4−7 filled bands, GENet attains an accuracy between
93–96%, surpassing deep MLP/ResNet baselines by > 60%.

(2) Accuracy degrades linearly by only ≈ 3% when evaluating on 10 × 10 lattices,
demonstrating strong size extrapolation.

(3) GENet extends to higher order Chern numbers with a mean absolute error of
0.25, well within the rounding threshold used in physics.

These results establish gauge-equivariant neural networks as an efficient, theoreti-
cally sound, and highly generalizable tool for exploring complex topological phases
of matter.

1.3 Outline
The structure of this thesis is as follows. Chapter 2 reviews the physical background
required to understand the problem, starting from the fundamentals of quantum me-
chanics and gradually introducing the concept of Chern numbers. It also presents
the mathematical tools concerning unitary groups and class functions, which play a
central role in both our data generation scheme and the theoretical analysis of model
approximation. Chapter 3 describes the proposed network architecture, including
the gauge-equivariant building blocks and a universal approximation theorem tai-
lored to our setup. Chapter 4 provides an in-depth empirical study of the model’s
behavior and performance. In particular, it includes an ablation study comparing
our model with other baselines, explores generalization from trivial to non-trivial
samples and from small to large grids, and extends the method to higher-dimensional
topological insulators. We conclude in Chapter 5 with a summary of our findings,
current limitations, and directions for future research.
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2
Background

In this section, we introduce the concept of multiband insulators through building
from the basic formulation of quantum mechanics.

2.1 Quantum Mechanics and Hamiltonians
Quantum mechanics provides a fundamental framework for the description of mi-
croscopic particle behaviours. We represent the position, momentum, and other
information of particles with a ”state”, with all possible states forming an infinite-
dimensional complex Hilbert space. For each observable physical quantity, we as-
sociate with it a Hermitian operator. The eigenvectors of the operator are called
eigenstates, and the corresponding spectra are all possible outcomes from measuring.
The evolution of a quantum state is governed by the Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩, (2.1)

where ℏ is the reduced Planck’s constant, |ψ(t)⟩ is the state vector, and H is the
Hamiltonian operator, corresponding to the total energy of the system.

Due to the lattice crystalline structure of the atoms, the potential V (r) is periodic
along each basis of the lattice,

V (r) = V (r + R)

By Bloch’s theorem, eigenstates of an electron in such a periodic potential can be
written in the form

ϕ(r) = eip·ru(r)
where p is the momentum, u(r) shares the same periodicity with the lattice. In
the same merit of classical Hamiltonian mechanics, we could perform a Fourier
transformation from the position space to the momentum space

ψ(p) = 1
(2πℏ)n

2

∫
dnreip·r/ℏψ(r),
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Chapter 2. Background

and consider the primitive cell in the reciprocal momentum lattice, defined as the
Brillouin zone. In this thesis, it is topologically equivalent to a n dimensional torus
T n, whose dimension is the same as the lattice.

Multiband insulators are materials in which multiple electronic bands are involved
in the insulating behavior. By electronic band, we mean an eigenstate of the Hamil-
tonian, namely an energy level for the electrons to dwell in. In this scenario, since
we restrict to a finite number of relevant bands or eigenstates, the Hamiltonian is
essentially reduced to a finite-dimensional operator, namely a complex Hermitian
matrix. Therefore, we can formulate the Hamiltonian as a map from the Brillouin
zone to Hermitian matrices.

2.2 Gauge Symmetry and Berry Curvature
By the previous formulation, the Hamiltonian is a map from the base manifold
T n (Brillouin Zone) to the space of Hermitian matrices. Thus for any given p ∈
Uα ⊂ T n, we could locally diagonalize H(p) into Uα(p)†Λα(p)Uα(p). where Uα(p)
represents the eigenstates, and Λα(p) represents the eigenvalues (all possible energy
levels).

From now on, we make the assumption that Λ(p) has the form diag{E+Im+, E−Im−},
i.e. a positive eigenvalue with m+ multiplicity and a negative eigenvalue with m−
multiplicity. Physically, this means the insulator has m− bands filled with electrons,
whose energy levels are equal, and m+ empty bands whose energy levels are also
equal, but are too high for the electrons to leap into.

This allows a symmetry, or equivalently, an invariance under a group action: for any
set of linearly independent eigenstates with negative eigenvalues U−(p), Ω(p)U−(p)
gives another set of eigenstates, where Ω(p) is unitary. For simplicity, we denote m−
as m, and U(m) is defined as the gauge group.

The Berry connection is defined as a 1-form A such that

∀X ∈ TpM, XpA(p) = U †(p)XpU(p)

With an explicit coordinate system, the Berry connection can be written as

A(p) =
∑

Ai(p) = U †(p)∂iU(p)dxi.

Note that due to the non-uniqueness of U(p), the Berry connection is not well-defined
globally. For instance, if Uβ(p) = Uα(p)Ωαβ(p), then

Aβ = Ω†
αβAαΩαβ + Ω†

αβdΩαβ

However, if we consider Fα = dAα + Aα ∧ Aα, we see that these local differential
forms are actually compatible, up to conjugation. We note Ωαβ as g, Aα as A, g†dg
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Chapter 2. Background

as X for now.

d(Aβ) =d(g†Ag +X)
=dg† ∧ Ag + g†dAg + g†A ∧ dg + dX
= −X ∧ g†Ag + g†dAg + g†Ag ∧X + dX

Aβ ∧ Aβ =g†A ∧ Ag + g†Ag ∧X +X ∧ g†Ag +X ∧X

⇒ Fβ =g†Fαg (2.2)

We define F to be the Berry curvature.

2.3 Chern numbers
We now assume the base manifold (Brillouin zone) to be two dimensional, and
consider the determinant bundle associated to the current U(n)-principle bundle
E, namely the line bundle of filled band eigenstates. This is defined by taking the
exterior algebra ∧m E = {ψ1(p) ∧ ψ2(p) ∧ · · · ∧ ψm(p) = ∧mψi(p)}. Then the new
curvature Adet induced by Berry curvature has the following property

Adet(∧mψi(p)) =
∑

i

ψ1(p) ∧ · · · ∧ Aψi(p) ∧ · · · ∧ ψm(p) (2.3)

=
∑
i,j

ψi(p) ∧ · · · ∧ Aij(p)ψj(p) ∧ · · · ∧ ψm(p) (2.4)

=TrA ∧m ψi(p) (2.5)

In other words, the induced (local) one form has the simple form of TrA. Notice
that dAdet = TrF is globally defined; furthermore, TrF = Tr(dA+A∧A) = dTrA =
dAdet. We now show the correlation between TrF and Čech cohomology.

Recall thatAβ = Ω†
αβAαΩαβ+Ω†

αβdΩαβ, therefore ωβ,α = TrAβ−TrAα = TrΩ†
αβdΩαβ.

Since Ωαβ ∈ U(n), we have

ωβ,α = Trd log Ωαβ = d log det Ωαβ := dϕαβ (2.6)

On the other hand, we know that the gauge transformation on overlapping covers
satisfies ΩαβΩβγΩγα = I, which implies ωβ,α + ωα,γ + ωγ,β = d(2πin), n ∈ Z.

In other words, {ϕαβ} forms a 2-cocycle. With the isomorphism between Čech
cohomology and de Rham cohomology, we conclude that [TrF/2πi] is exactly the
image of [{ϕα,β}], from Ȟ2(T n,F) → H2

dR(T n,R). Specifically, if we assume n = 2
and a unit volume for the Brillouin zone, we have

c1 :=
∫

BZ

TrF
2πi ∈ Z (2.7)

We define c1 as the first Chern number.

A nontrivial Chern number means that it is impossible to find smoothly varying
eigenvectors over the entire Brillouin zone. There are generalizations to higher di-
mensional Brillouin zones, on which we performed experiments, see Section 4.5.

7



Chapter 2. Background

2.4 Class Functions
As defined in (2.8), the discretized Chern number is invariant under adjoint actions
of unitary matrices. In particular, the local quantity f(g) = ImTr log g is a so-called
class function on the gauge group U(N).

Definition 1. A (complex) class function on a (compact) Lie group G is a function
F : G → C such that

F (h−1gh) = F (g), ∀g, h ∈ G

We denote the space of square integrable class functions over G as L2
class(G). It

is a closed subspace of L2(G), hence a Hilbert space itself with the induced inner
product.

The orbit set of fluxes under the gauge group action is U(1)N/SN
, that is, the un-

ordered tuple of eigenvalues. Consequently, class functions can only depend on those
eigenvalues. The following theorem [40] formalized this intuition and characterized
the structure of square integrable class functions.

Theorem 1 (Peter-Weyl). Let L2
class(G) denote all class functions on G, then all

irreducible representations of G are finite-dimensional, and

L2
class(G) = span{χρ}

Where χρ represents the character of the irreducible representation ρ.

For a finite dimensional irreducible representation ρ, its character is a symmetrical
polynomial, when restricted to its maximal torus, which, for the unitary group U(N),
is isomorphic to the set of U(1)N , in other words, the ordered tuple of eigenvalues.
These polynomials can be expressed as linear combinations of Schur polynomials.

Proposition 2. Square-integrable class functions can be expressed as linear combi-
nations of symmetric polynomials, namely

∀f ∈ L2
class(G), f |T N (λ1, λ2, · · · , λN) =

∞∑
k=0

ckek,

where
ek =

∑
ki≥0,

∑
ki=k

∏
i

λki
i , ck ∈ C

Furthermore, the standard Newton’s identities state that

Proposition 3. For symmetric polynomials, we have

kek =
k∑

t=0
(−1)t−1ek−tpt.

Where pt(z1, · · · , zN) = ∑
zt

i is the tth equal power polynomial.

8



Chapter 2. Background

Therefore,

Proposition 4. ∀f ∈ L2
class(G), f could be approximated by a series of functions

fn(p1, · · · , pn) on the first n equal power polynomials.

Note that for any matrix W , pn is essentially TrW n. This proposition plays a crucial
part in the proof of the universal approximation theorem for our model, presented
in Section 3.3.

2.5 Approximation in Discretized Brillouin Zones
In practice, we consider a discretization of the Brillouin zone into a rectangular grid
with periodic boundary conditions, of which there are a total of Nx ×Ny = Nsite grid
points. On this grid, one can define the following discrete, integer Chern number C̃
which converges to C for vanishing grid spacing [41]

C̃ =
∑
(i,j)

Im Tr log Wi,j , (2.8)

where Wi,j ∈ U(N) is the Wilson loop at grid point k⃗ = (i, j), defined by

Wk = Wi,j = Ux
i,jU

y
i−1,jU

x
i−1,j−1U

y
i,j−1 (2.9)

in terms of the link matrices Ux
i,j, U

y
i,j ∈ CN×N . These links capture the overlap

between the eigenvectors {vn(k) : k ∈ BZ}N
n=1 of the Bloch Hamiltonians of neigh-

boring grid points and have components

[Ux
i,j]m,n = vm(ki,j)⊤vn(ki−1,j) (2.10)

[Uy
i,j]m,n = vm(ki,j)⊤vn(ki,j−1) . (2.11)

The links are discrete analogs of the operator exp(iA(k)dk). The Wilson loops
correspond to closed 1 × 1 loops of the link variables. In higher dimensions, there
are several Wilson loopsW γ

k per grid point k that are aligned with different directions
γ in the lattice.

The learning task we will study in this article is to predict the discrete Chern number
C̃ ∈ Z given the Wilson loops Wi,j ∈ CN×N on the lattice. One of our models also
uses the links as additional input. Although the Chern number is given by the
innocuous-looking equation (2.8), learning it is not straightforward as detailed in
Section 4.1. We will show that the main reason for the difficulty of learning (2.8)
lies in its gauge invariance of C̃.

All topological indices, including the Chern number, are invariant under the gauge
group U(N). Gauge transformations are local symmetries, i.e. at each lattice point
i, j they act with a different group element Ωi,j ∈ U(N) by

Ux,y
i,j → (Ωi,j)†Ux,y

i,j Ωi+1,j (2.12)
W γ

i,j → Ω†
i,jW

γ
i,jΩi,j , (2.13)

9



Chapter 2. Background

where † denotes Hermitian conjugation. Hence, the total symmetry group is U(N)Nsite .

The gauge symmetry of the system implies the equivalence relation

W ∼ Ω†WΩ ∀ Ω ∈ U(N) (2.14)

on the set of Wilson loops at each grid point. According to the spectral theorem,
there is exactly one diagonal matrix in each equivalence class (group orbit) with
elements in U(1), up to reordering of the diagonal elements. Therefore, the set of
equivalence classes for this relation is given by U(1)N/SN

, the set of diagonal unitary
N × N -matrices up to permutation of the diagonal elements. This fact has been
used in the construction of gauge equivariant spectral flows [34]. We will exploit it
to simplify the data augmentation process.

2.6 Higher order Chern numbers
We hereby extend the definition of Chern numbers for two-dimensional Brillouin
zones to general Brillouin zones with a spatial dimension of 2n.

For two dimensional Brillouin zones, the linear space of two dimensional U(n) -valued
differential forms Ω2(M,U(n)). On the other hand, for 2n dimensional Brillouin
zones, which are topologically equivalent to T 2n = R2n/Z2n , there are

(
2n
2

)
different

oriented planes, i.e. for every two directions kµ, kν , there is a planar curvature

F µ,ν = ∂kµA
ν(k) − ∂kνA

µ(k) + [Aµ(k), Aν(k)] . (2.15)

Where Aµ is analogously defined as in (2.2). Therefore, the Berry curvature locally
has the form F = F µ,νdkµdkν . Similarly, there is a planar flux

W µ,ν
k = Uµ

k U
ν
k+µ̂(Uµ

k+ν̂)†(Uν
k )†. (2.16)

It is easy to verify that W µ,ν
k = (W ν,µ

k )†.

With this generalized form of Berry curvature, the nth order Chern number of a
2n-dimensional Brillouin zone is defined as

Cn =
( 1

2πi

)n ∫
BZ

Tr [F (k)n] d2nk . (2.17)

Here, F (k)n represents a wedge product of differential forms F µ,ν(k) dkµ dkν , which
could be written equivalently as

2nn!
(2n)!

∑
µ1,...,µ2n

ϵµ1,...,µ2n

n∏
t=1

F µ2t−1,µ2t(k). (2.18)

It could be shown that Cn is always an integer, ∀n ≥ 1.

On the discretized lattice, since the fluxes W µ,ν
k are an approximation of exp(F µ,ν),

we calculate the discrete version of higher order Chern numbers with the following
equation

C̃n = n!
(2n)!(πi)n

∑
k

∑
µ1,...,µ2n

Trϵµ1,...,µ2n

n∏
t=1

logW µ2t−1,µ2t

k . (2.19)
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Chapter 2. Background

When taking n = 1, Equation (2.19) coincides with (2.8). Since log function is
analytical, thus could be represented by a power series, and (Ω†WΩ)n = Ω†W nΩ,
we have

C̃n(W µ2t−1,µ2t

k ) = C̃n(Ω†W
µ2t−1,µ2t

k Ω), ∀Ω ∈ U(N)
This discretized Chern number is an integer only in the continuum limit, therefore
we use the MAE, i.e. mean absolute error instead for evaluation.

2.7 Sampling on Lie Groups
A specialized sampling method over compact Lie groups is required. Specifically, for
a random variable X taking values in U(N)—the group from which link variables
are drawn—we require the distribution of X to be invariant under left multiplication
by group elements:

X ∼ gX, ∀g ∈ U(N)

A practical method satisfying this requirement was proposed by Stewart [42], where
unitary matrices are generated via the QR decomposition of complex Gaussian ma-
trices. Specifically, let A ∈ CN×N be a matrix with i.i.d. standard complex normal
entries (each with independent N (0, 1) real and imaginary parts). Let U = f(A)
denote the unitary matrix produced by applying a fixed QR-based procedure to
A. We assume this procedure is deterministic, i.e., the map f : CN×N → U(N) is
single-valued.

Proposition 5. U and gU are identically distributed, ∀g ∈ G.

Proof. By definition, gU = f(gA). Then it suffices to show gA and A are identically
distributed.

For complex matrices, we consider the two bijections. The first one is p : A →(
ReA
ImA

)
. Then p(gA) =

(
Reg −Img
Img Reg

)
= ĝp(A). It is easy to verify ĝ is orthogonal.

We then flatten the matrix with a vec operator

vec(A) = (A11, A12, . . . , A1N , . . . , AM1, . . . , AMN)

The following property is well known.

Proposition 6 (Vec Operator Identity). The vec operator and group actions are
related via tensor products as vec(gA) = (g ⊗ IN)vec(A).

Where ⊗ is the Kronecker product. Then vec(p(gA)) = (ĝ⊗IN)vec(p(A)). However,
vec(p(A)) is just (ReAij, ImAij), which follows the distribution N (0, I2N2), and ĝ⊗IN

is still orthogonal, it follows that

vec(p(gA)) ∼ N (0, (ĝ ⊗ IN)I2N2(ĝ ⊗ IN)⊤) = N (0, I2N2)

Therefore vec(p(gA)) ∼ vec(p(A)). By bijectivity, gA ∼ A.

11



Chapter 2. Background

An immediate corollary is that this method induces a uniform distribution over
det(U) ∈ S1. Since left-multiplying U by a scalar unitary matrix eiθI also preserves
its distribution, we have

eiθ det(U) = det(eiθ/NIU) ∼ det(U). (2.20)
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3
Architecture and Setup

3.1 Network Architecture
As demonstrated in the previous section, the gauge symmetry present in this problem
is completely local, thus has an enormous size. To be specific, since the Wilson
loops at each site can be transformed independently, the total symmetry group is
U(N)Nsite , an exponentially larger group than for more traditional group equivariant
networks. This motivates a development of architectures that respect this gauge
transformation, as we discuss in this chapter.

The input data in our network is the set of discretized Wilson loops W γ
k ∈ U(N)

and all equivariant layers in our setup operate on tensors of this form. The index γ
counts the number of different orientations of the Wilson loops per site (in 2D, there
is only one) for the input and serves as a general channel index in deeper layers.
Hence, our layers operate on complex tensors of the shape Nch×Nsites×N×N .

3.1.1 Gauge equivariant layers
Our model is composed of the following equivariant layers which were introduced in
[39] as well as our new gauge equivariant normalization layer.

GEBL (Gauge Equivariant Bilinear Layers) Given an input tensor W γ
k , the

layer computes a local quantity per site as

W ′γ
k =

∑
µ,ν

αγµνW
µ
k W

ν
k , (3.1)

where W ′ has Nout channels and αγµν ∈ CNin×Nin×Nout are trainable parameters.
Using (2.13), it can easily be checked that this layer is equivariant. In practice,
GEBL includes also a linear and a bias term which are obtained by enlarging W
with its Hermitian conjugate and the identity matrix. In order to merge two branches
of the network, two different W can also be used on the right-hand side.

13
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GEAct (Gauge Equivariant Activation Layers) Given a tensor W γ
k , the layer

maintains channel size Nin and serves as an equivariant nonlinearity defined by

W ′γ
k = σ(TrW γ

k )W γ
k , (3.2)

where σ is a usual activation function. In Section 3.3, we prove a universal approx-
imation theorem for a certain type of σ. In practice, we use σ(z) = ReLU(Rez) to
avoid gradient vanishing, hence referring to this layer also as GEReLU.

GEConv (Gauge Equivariant Convolution Layers) This is the only layer in
our setup which introduces interactions between neighboring points. It is also the
only layer for which the link variables Uγ

k are used. Given a tuple (Uµ
k ,W

γ
k ), the

layer performs a convolution as

W ′γ
k =

∑
µ,d

∑
σ

ωµdγσ(Udµ
k+dµ̂)†W σ

k+dµ̂U
dµ
k , (3.3)

where Udµ
k = Uµ

k . . . U
µ
k+(d−1)µ̂ and dµ̂ is the length-d vector in the µ direction in the

lattice. The output W ′ of this layer has the shape Nout × Nsite × N × N and ω
are trainable weights of shape dim × d × Nout × Nin. Note that this layer does not
update the links. Using the transformations (2.12) and (2.13), one can check that
this layer is equivariant as well. When we take a zero convolution kernel size, the
layer degenerates into an equivariant linear layer that is completely local.

Trace Layer Given a tensor W γ
k , this layer maintains the channel size and takes

the trace of the fluxes as
T γ

k = TrW γ
k . (3.4)

Since the trace is invariant under the transformations (2.13), this layer renders the
features gauge invariant. The output has the shape Nin ×Nsite.

Dense Layer After the trace layer, we perform a real valued linear layer on Tk

as
T ′

k = wγ
Re · Re(T γ

k ) + wγ
Im · Im(T γ

k ) + b , (3.5)
where wγ

Re, w
γ
Im and b are trainable parameters. The output has the shape Nsite.

Note that we only transform gauge invariant features with this layer since it does
not respect the gauge symmetry.

TrNorm (Trace Normalization Layers) The bilinear GEBL-layers introduced
above quickly lead to training instabilities when stacked deeply, as demonstrated in
Section 4.4.1 below. To solve this problem, we introduce a novel gauge-equivariant
normalization layer which we insert after the nonlinearities. Given an input tensor
W γ

k , this layer maintains the channel size and performs a channel-wise normalization
as

W ′γ
k = 1

|meanγ{TrW γ
k }|

W γ
k . (3.6)

Where the prefactor meanγ{TrW γ
k } is the mean value of traces over different chan-

nels. This operation is gauge equivariant since the prefactor is gauge invariant.

14



Chapter 3. Architecture and Setup

After the normalization, the output features W ′ satisfy meanγ{TrW ′γ
k } = eiϕk for

some ϕk ∈ R. In practice, we introduce a thresholding mechanism, by taking
max{ε, meanγ{TrW ′γ

k }} as the divisor.

3.1.2 Network Architecture
We now use the layers introduced in the previous section to construct three different
equivariant network architectures.

GEBLNet (Gauge Equivariant Bilinear Network) GEBLNet is a model de-
signed to operate purely locally, meaning that at each lattice site, the network
processes information independently, without direct communication between neigh-
boring sites during the feature extraction process. More precisely, the inputs to the
model are the fluxes W γ

k alone, where γ denotes the different channels and k labels
the spatial lattice sites. The features at different sites remain separated throughout
the network, only being combined at the final global aggregation step.

The processing at each site is performed by a sequence of building blocks, each
consisting of a GEBL, a GEAct, and a TrNorm. The GEBL layers generate lo-
cal higher-order interactions among input channels. The GEAct layers introduce
nonlinearity in an equivariant manner. To address potential instabilities caused
by stacking multiple bilinear layers, TrNorm layers are inserted after each activa-
tion step, normalizing the trace of the features channel-wise and maintaining stable
training dynamics.

After several such blocks, the resulting feature tensor is passed through a Trace layer,
which extracts gauge-invariant scalar quantities at each site by computing the trace
over the group elements. Subsequently, a fully connected dense layer is applied to
these local traces to transform the features into sitewise scalar predictions. Finally,
these scalar predictions are summed across all lattice sites to produce a single global
output, corresponding to the predicted Chern number of the sample.

GEBLNet is our primary model to study. An illustrative overview of the GEBLNet
architecture is provided in Figure 3.1.

GEConvNet (Gauge Equivariant Convolutional Network) GEConvNet is
an alternative architecture that incorporates local interactions between neighboring
lattice sites through gauge-equivariant convolutions. While GEBLNet only operates
locally within each site, GEConvNet allows limited communication between adjacent
sites, enabling the network to capture short-range correlations.

More precisely, the inputs to GEConvNet are both the link variables Uµ
k and the

fluxes W γ
k , where µ indexes the directions of the links, γ denotes the channels,

and k labels the lattice sites. The link variables are used to implement equivariant
convolutions that respect the underlying U(N) gauge symmetry of the system.
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Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

Figure 3.1: Architecture of GEBLNet. In this figure, the rectangles represent the
spatial grid, and the number of layers (Nch) represents the number of channels (γ).
Each circle represents a site on the grid, and quantities on different sites do not
interact with each other, until the last summation on grids.

Nch

Nx

Ny

Input: (U,W )

Nch

GEBL
GEAct

TrNorm

Nch

GEConv
GEAct

TrNorm

Nch

GEBL

Nch

GEBL
GEAct

TrNorm

Nch

GEConv
GEAct

TrNorm
Nch

GEBL

Nch

Trace
Dense

Sum

Figure 3.2: Architecture of GEConvNet. In this figure, the rectangles represent
the spatial grid, the arrows on the grid represent links, and the number of layers
(Nch) represents the number of channels (γ). Each circle represents a site on the
grid, and quantities on different sites do not interact with each other, except for the
GEConv Layers, and the last summation on grids.
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At each site, the processing is performed by two parallel branches: one branch
consists of a sequence of a GEBL, a GEAct, and a TrNorm, while the other branch
consists of a GEConv, a GEAct, and a TrNorm. The outputs of these two branches
are then merged through an additional GEBL layer.

After several such blocks, the feature tensor is passed through a Trace to extract
gauge-invariant scalar features by tracing over the group elements. A subsequent
dense layer transforms these sitewise traces into scalar predictions. Finally, the
outputs across all sites are summed to obtain a global prediction, corresponding to
the Chern number of the sample.

By allowing controlled local interactions, GEConvNet offers a more expressive ar-
chitecture compared to GEBLNet, potentially capturing subtle spatial structures in
the data. However, it introduces additional complexity due to the use of link vari-
ables and neighbouring operations. An illustration of the GEConvNet architecture
is provided in Figure 3.2.

We also introduce two baseline architectures for comparison, whose motivation and
feasibility follows from Section 3.3. These two models also preserve gauge equivari-
ance for the two-dimensional setting, but discard the freedom of gauge group action
as in GEBLNet and GEConvNet, and operate exclusively on gauge invariant fea-
tures that are extracted at the very first processing step. As is demonstrated later,
they exhibit weaker expressibility and reduced scalability.

TrMLP (Trace Multilayer Perceptron) TrMLP is a simple model that oper-
ates on gauge-invariant quantities extracted directly from the input fluxes. Specifi-
cally, for each site k, it computes a characteristic feature vector

(
Tr(W γ

k )1, . . . ,Tr(W γ
k )N

)
,

where γ indexes the different input channels and N is a hyperparameter specifying
the number of trace-based features per site. These vectors, already gauge invariant,
are then passed through a multilayer perceptron (MLP), and finally summed across
all sites to produce the global prediction for the Chern number.

DeepSpec (DeepSet on Spectral Data) This model preprocesses the flux data
with a diagonalization, and then feeds the eigenvalues towards a DeepSet-like model,
which is invariant under permutation of the input data. Specifically, for input with
the form λi

k, the model calculates locally the output as

N (λi
k)k = ρ

(∑
i

ϕ(λi
k)
)

where ρ, ϕ are arbitrary neural networks. Here, we set them as MLPs as well.
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3.2 Training Setup
The models all follow the general strategy of calculating local quantities first, and
summing over lattice sites. Therefore, we adopt two loss functions for our training:
global loss Lg and standard deviation loss Lstd. Specifically, given the network f(W )
and the Chern number C̃, the global loss calculates as

Lg = ∥f(W ) − C̃∥1.

Meanwhile, Lstd evaluates the entrywise standard deviation of the network output
after the dense layer, denoted as (g(Wk))k, namely

Lstd∥ max({std(g(Wk)k), δ}) − δ∥1,

where δ is a hyperparameter, set to 0.5 by default.

The standard deviation loss is necessary to prevent the model from collapsing to
only zero outputs, since it forces the model to output locally differed quantities.
This is particularly relevant for the training on trivial topologies only, as described
below. The total loss function Ltotal adds these two terms, Ltotal = Lg + Lstd.

With a total of 5000 training epochs, we adopt a default initial learning rate of 10−4

that decays by a factor of 0.1 at epoch 2500 and 3750, and an Adam optimizer with
scheduling.

The width and depth of models vary across experiments and are specified in each
corresponding setting, see Chapter 4.

For evaluation, we compute the accuracy by rounding the network output f(W ) to
the nearest integer and comparing it with the Chern number C̃, unless otherwise
specified.

3.3 Approximation properties of Gauge Equivari-
ant Networks

In this section, we will present a universal approximation theorem for our models.
We focus on GEBLNet, whose inputs are solely Wk.

Theorem 7 (Universal Approximation Theorem). For a compact Lie group G, and
with the nonlinearity σ in GEAct taking the form σ̃ ◦ Re, where σ is bounded and
non-decreasing, GEBLNet could approximate any class function on G.

By Proposition 4, it suffices to show that GEBLNet can approximate any function
f(p1, . . . , pn), where pn is Trgn. Since G is compact, (pi) takes value automatically
on a compact set Kn, where the subscript denotes the dimension.
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We formalize the network architecture GEBLNet. Given the flux tensor Wk, we
stack the identity and its Hermitian conjugate to a second channel as

W ′γ
k = (Wk,0,Wk,1,Wk,−1) := (I,Wk,W

−1
k ).

Afterwards, the tensor goes through several blocks, each containing three layers:
GEBL, GEAct, and TrNorm.

After several blocks we calculate the trace per-channel and add a linear layer (the
“Dense layer”) at the end. The Dense layer acts on the real and imaginary parts
separately. Then we take the sum over the site index (to calculate the topological
invariant).

So the outputs have the following form:

Wk 7−→ w · TrNorm ◦ σ̂ ◦ GEBLn ◦ · · · ◦ TrNorm ◦ σ̂ ◦ GEBL1(Wk)) + b.

Where σ̂(W γ
k ) = σ(TrW γ

k )W γ
k . We denote the set of these functions by BLN σ(G),

where the subscript σ indicates the choice of activation function. We further denote
by BLN k

σ(G) the subset of BLN σ(G) with k blocks.

Since we attempted to learn local quantities F (Wk), we omit the subscript k. Fur-
thermore, we treat the flux W as an abstract element in the Lie group G, denoted as
g. In this case where the input channel size is one, we propose the main result:

Theorem 8 (Universal Approximation Theorem). For any activation function σ =
σ̃ ◦ Re, where σ̃ is bounded and non-decreasing, BLN σ(G) is dense in L2

class(G).

The proof of this will require the following lemma.

Lemma 9. BLN k
σ(G) is dense in {f(p1, · · · , p2k) : ∥f∥∞ < ∞} ⊂ L∞(G), where

pi = Trgi.

Proof. We first assume that TrNorm is an identity layer, namely TrNorm(x) = x.
In this case, we prove this lemma by induction. For k = 1, the output has the
following form

g 7−→
( 2∑

i=0
αt

ig
t

)
i

7−→ ωiTrσ
( 2∑

i=0
αt

ig
t

)
i

+ b.

Note that Trσ̂(∑2
i=0 α

t
ig

t) = σ(Reαt
ipt)αt

ipt. For any channel index i, when taking
only the real part (in other words, forcing wi,Im in the dense layer to be zero), the
output is simply

σ

(∑
t

Reαt
iRept − Imαt

iImpt

)(∑
t

Reαt
iRept − Imαt

iImpt

)

=σ̂
(∑

i

Reαt
iRept − Imαt

iImpt

)
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Therefore, it is essentially a one-hidden-layer fully connected network on {(p1, p2)} ≃
R4 . Thus the set is dense.

Assume this is the case for n, and we would like to prove the lemma for n + 1. By
denoting 2n = N , the layer input has the following form:

σ̃

(
N∑

t=0
at

i(p0, · · · , pN/2)pt

)(
N∑

t=0
at

i(p0, · · · , pN/2)gt

)
,

Now the new “at
i”(denoted as bt

i) takes the following form:

bt
i =

∑
p+q=t

∑
j,k

αijkσ̃(at
jpt)σ̃(at

kpt)ap
ja

q
k.

Consider the bijection F : CN+1 → PN(C), given by F (⃗a) = ∑
t atz

t. Using this we
define

a⃗ ∗ b⃗ = F−1(F (⃗a)F (⃗b)).
Then

b⃗i = αijkσ̃(a⃗j · p⃗)σ̃(a⃗k · p⃗)a⃗j a⃗k = αijkH(p, a⃗j, a⃗k).
This forms a linear space Bn+1 ⊂ (L∞(Kn+1))2N+1. For simplicity we henceforth
omit the subscript on Kn+1.

We assume (at
i)N

t=0 could approximate any constant function of p1, · · · , pN/2. This
is trivially true when n = 1, since it is a function on a constant and takes arbitrary
constant values.

Denoting e0 = F−1(1/d), where d = dimG, we have e0 · p = 1, ∀p ∈ K. Since K is
compact, there exists an open set U s.t. e0 ∈ ∂U , and b ·p ∈ (1,+∞), ∀b ∈ U, p ∈ K.

On the other hand, it is easy to see that
{
b ∗ b : b =

(
1, z, · · · , zN

)}
is linearly in-

dependent as a subset. This way we could choose 2N + 1 elements {bzt}2N
t=0 from its

intersection with U , such that span{bzt ∗ bzt} = C2N+1.

Now given a constant vector b⃗ = (b0, · · · , b2N), there exits {αt} such that b⃗ =
αtb

zt ∗ bzt . We want to show that b⃗ can be approximated by any precision ϵ.

Without loss of generality, assume sup σ̃ = 1 and inf σ̃ = 0. Then, for all ϵ, there
exists M0 > 0 such that for all x > M0/2, σ̃(x) ∈ (

√
1 − ϵ, 1). This gives∣∣∣∣∣ d2

M2H (p,Me0,Me0) − 1
∣∣∣∣∣ = |1 − σ̃(M)2| < ϵ, ∀M > M0.

By induction, there exists at such that ∥at − bzt∥∞ < min{ϵ,M/2}. Consider

b⃗′ = αt
1
M2H(p, at, at) = αtσ̃(Mαt · p)2at ∗ at.
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Then

|b⃗′ − b⃗| = |αt(σ̃(Mαt · p)2 − 1)bzt ∗ bzt + σ̃(Mαt · p)(bzt ∗ bzt − αt ∗ αt)|
≤ αtϵ|bzt ∗ bzt | + 2ϵ|bzt | + ϵ2

≤ C (⃗b,N)ϵ. (3.7)

When the coefficient functions approximate constants, the last layer is essentially
a one-hidden-layer fully connected network over p1, · · · , p2N . Similar to the N = 1
case, as the width grows larger, the network can approximate any function f over
p1, · · · , p2N .

We now consider the Trace Normalization layer, and show that any function that
could be represented by networks without TrNorm could also be represented by those
with TrNorm. Without loss of generality, we only consider BLN 1

σ(G). For the sole
GEBL and GEAct, since the Lie group is compact, we could scale the coefficients
such that |Trσ ◦ GEBL(G)| < ϵ. As a result, the output of the packed layer is
essentially 1

ϵ
σ ◦GEBL(G). Therefore, by rescaling the parameters of the dense layer

again, the TrNorm layer is cancelled. This concludes the proof of the lemma.

We may now complete the proof of Theorem 8.

Proof. (Proof of Theorem 8)
Since G is compact, we have L2(G) ⊃ L∞(G) and ∥f∥2 ≥ C∥f∥∞. Therefore, by
Proposition 4, for all f ∈ L2

class(G), and for any ϵ > 0, there exists

fn = fn(p1, · · · , pn) ∈ L∞(K)

such that ∥f − fn∥2 < 1/2ϵ. By Lemma 9 the function class BLN k
σ̂(G), consisting

of neural networks with k gauge equivariant bilinear layers, can approximate any
function f(p1, . . . , pk) arbitrarily well, provided k is large enough. We deduce that
there exists g ∈ BLN n

σ̂(G) ⊂ L∞(G) such that ∥g − fn∥∞ < 1/2Cϵ. Therefore

∥g − f∥2 < (C · 1/2C + 1/2)ϵ = ϵ.

This concludes the proof of the main theorem.

Similar techniques could also be applied to show the approximation property of
GEConvNet. However, its expressibility is considerably weaker in practice, as is
demonstrated in Chapter 4.
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4
Numerical Experiments

In this chapter, we aim to empirically evaluate the effectiveness and robustness of our
proposed gauge-equivariant neural network architecture (GEBLNet) in predicting
Chern numbers of multiband topological insulators.

As is mentioned in Chapter 2, the major challenge that lies in this learning task
is the massive symmetry group. To demonstrate this, we start by considering the
simpler problem of predicting determinants of N ×N real matrices A.

4.1 Learning Chern numbers using ResNets
Using the fact that Tr log(X) = log det(X), the Chern number defined in (2.8)
can be written as a sum over Im log det(W ). As a warmup to predicting Chern
numbers,

We construct a dataset containing N × N matrices with elements sampled from
a uniform distribution on the unit interval [0, 1]. As a baseline, we use a naive
multilayer perceptron (MLP) with residual connections f : RN2 → R, taking the
matrix elements as input and predicting the determinant value.

The determinant of an N × N matrix can be expressed as an order N polynomial
in the matrix elements. For example, the determinant of a 4 × 4 matrix Aij is given
by the fourth order expression.

det(A) =
4∑

i,j,k,l=1
ϵijklA1iA2jA3kA4l, (4.1)

where ϵ is the totally antisymmetric Levi-Cevita tensor.

Inspired by the functional form of the determinant in equation (4.1), we consider
higher order layers with structure

Aout
ij =

∑
k1,...,k2R

θij
k1...k2RAin

k1k2 . . . A
in
k2R−1k2R

, (4.2)
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Table 4.1: Relative error δ for linear MLP and bilinear residual architectures
predicting the determinant of real 4 × 4 matrices with uniform random elements in
[0, 1]. Standard MLP architecture fails to learn the determinant relation.

Architecture Layers δ

MLP 2 1.02
3 1.02

Bilinear 2 0.01
3 0.01

2 3 4 5 6 7 8
Matrix size N

10 5

10 3

10 1
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ro

r 

Figure 4.1: Best relative error of predicted matrix determinants for polynomial
architectures as a function of increasing matrix size. The ablations include layers up
to order 4. Dashed line indicates relative error of a mean predictor. Architectures
considered include layers of order ≤ 4, and depth ≤ 4, containing terms of up to
order 16 by composition.

where R is the number of factors of A in the layer, and θk1...k2R
ij are learnable parame-

ters. An architecture containing layers with R = 2 will be referred to as bilinear. As
the number of parameters grows quickly with order R, we use layers of order R ≤ 4
and construct higher order terms by composition of multiple layers. For example,
two layers of order R = 3 and R = 2 will contain terms of order 2, 3 and 6 when
using residual connections.

Predicted determinants f(A) are evaluated against the target determinant value
det(A) using absolute relative error δ = |f(A) − det(A)| / |det(A)|. Table 4.1 shows
the failure of a residual MLP architecture to learn the determinant of 4 × 4 real ma-
trices with uniformly distributed elements on [0, 1], whereas a bilinear architecture
with layers of order 2 can achieve low relative error.

Even though these higher order layers provide an architecture that is expressive
enough for determinants in small dimensions, they quickly run into issues for larger
matrices. Figure 4.1 shows that for matrix sizes corresponding to band size ≥ 4,
learning the determinant becomes prohibitively hard without better model priors.
This leads us to resort to a equivariant approach.
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4.2 Data Generation
We now formulate the data generation process of the main learning task. Through-
out the training and evaluation procedure, we generate samples on the fly, with a
batch size of 32.

4.2.1 General Dataset
The data generation pipeline consists of two main steps. Given a grid size Nx ×Ny,
we first generate random link variables using the following algorithm:

1. For µ = x, y, draw Aµ
k ∼ N (0, 1)N×N .

2. Perform a QR decomposition on Aµ
k , decomposing it into the product of a

unitary matrix Uµ
k and a semi-definite matrix Σµ

k , Aµ
k = Uµ

k Σµ
k .

3. Use Uµ
k as the link variable for site k in direction µ.

As discussed in Section 2.7, the distribution of the links generated in this way is
uniform on U(N), i.e. the random variables U and gU are identically distributed for
all g ∈ U(N).

In the next step, we compute the fluxes Wk using (2.9) and the discrete Chern num-
ber C̃ using (2.8). Ultimately, this yields a dataset of data-value pairs ((Uµ

k ,W
γ
k ), C̃).

We generate the training samples continuously during training to avoid overfit-
ting.

4.2.2 Diagonal Dataset
For some of our experiments, we require control over the distribution of the Chern
numbers in our training data. To this end, we employ a different data generation
strategy. Due to the invariance of our model under gauge transformations, train-
ing samples which lie in the same gauge orbit are equivalent in the sense that the
parameter updates they induce are the same. This implies that we can select an
arbitrary element along the gauge orbit for training. As discussed in Section 2.5,
there is always a diagonal matrix with U(1)-valued components in the orbit. There-
fore, by training on these matrices in U(1)N and manipulating the distribution of
the diagonal values, we can generate datasets with different distributions of Chern
numbers.

To propose the exact data generation scheme, we analyze the constraints imposed
by the discrete definition of the Chern number. By the definition of fluxes in (2.9),
each link appears exactly twice in all plaquettes, once in itself, and once inverted.
For example, Ux

k appears in itself in Wk and inverted in Wk−ŷ. Then we have:∏
k

detWk =
∏
µ,k

detUµ
k (detUµ

k )−1 = 1
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Specifically, since ∑k Im(log(detWk)) = Im(log(∏ detWk)) mod 2π, the discrete
Chern number C̃ is an integer.

Proposition 10. C̃ = 1
2π

∑
x Fx = n ∈ Z.

Then the necessary condition for a set of plaquettes to be generated from some links
is: ∏

k

∏
λ

eiθλ
k = ei

∑
k

∑
λ

θλ
k = 1, (4.3)

On the other hand, given any Wk that is diagonal per site, suppose it is generated
by diagonal links Uµ

k = diag{eiτ1
k,µ , . . . , eiτN

k,µ}. Then for each index λ we have the
following equations: ∏

eiτλ
k,xeiτλ

k+x̂,ye−iτλ
k+ŷ,xe−iτλ

k,y = 1,∀k (4.4)

This implies a necessary condition for Wk to be generated from diagonal links is
that, for any λ, ∑ θλ

k = 0. We omit the subscript λ for now.
Recall that k is the flattened index of (i, j), which could have the possible form
k = Nsitei + j. If we further flatten the index (k, µ) as k for µ = x, k + Nsite for
µ = y, then the equations become linear:

τk + τ(k+Nsite+1) mod 2Nsite − τ(k+Nx) mod Nsite − τk+Nsite = θx̂, ∀k, (4.5)

which is essentially


1 −1 −1 1
. . . . . . . . . . . .

−1 . . . −1 . . . . . .
. . . . . . . . . 1

−1 1 1 −1



⊤
τ0
τ1
...

τ2Nsite−1

 =


θ0
θ1
...

θNsite−1


(4.6)

The coefficient matrix has rank Nsite − 1, and it is solvable iff. ∑k θk = 0, and that
is exactly what the necessary condition specifies. Therefore, the fluxes Wk can be
generated from diagonal Uµ

k if and only if

∀λ,
∏
k

eiθγ
k = 1. (4.7)

This determines a submanifold M ′ in M = {m ∈ U(1)N×Nsite : m satisfies (4.3)}
with codimension N − 1. With the natural metric on U(N)Nsite ⊃ M , defined as
d(g, h) = ∥ψλ

k ∥2, where ψλ
k are phase angles of eigenvalues of gh−1, M ′ is a π

√
N

Nsite
-

net of M . For each channel λ, suppose ∑k θ
λ
k = ϕλ, ϕλ ∈ [−π, π). Let the new θ be

θ̃γ
k = θλ

k + −ϕk/Nsite. Then

d(W, W̃ ) ≤
√√√√∑

k,λ

( 1
Nsite

)2
ϕ2

k ≤ π

√
N

Nsite
.
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As the number of sites gets larger (the grid gets more refined), the net gets denser.
We can further extend the sufficient condition by considering the permutations,
since the permutation matrices are also unitary and their actions on fluxes are
adjoint.

We now propose the diagonal data generation scheme:

1. Generate label Fk ∈ [−π, π), such that ∑Fk = 2πn.

2. For every k but the last one, generate (ϕk)x such that ∑λ ϕ
λ
k = Fk.

3. For every k but the last one, let Wk be diag{eiθ1
k , . . . , eiθN

k }.

4. Let the last Wk̂ be ∏k ̸=k̂ W
−1
k .

The last product will not cause confusion since diagonal matrix multiplication is
commutative.

The process could also be reversed: generate the fluxes first, then find a solution
to (4.6) to get the links. This way, we could operate directly on the distribution
of eigenvalues, thus customizing the data generation process. Furthermore, the
diagonal dataset reduces the computation cost significantly for training.

4.3 Model Comparison

In this section, we compare the model performance in the benchmark training task
over a grid size of 5 × 5 and N = 4 filled bands.

4.3.1 Baseline Equivariant Models

Since Chern number is a gauge invariant quantity, the naive strategy to learn it is
through qauge invariant features. Following from the discussions in Section 2.4, we
could either extract eigenvalues straightforwardly, or the traces of powers TrW n.
This leads to the two baseline models: DeepSpec and TrMLP, introduced in Sec-
tion 3.1.

DeepSpec is composed of two parts: the element-wise embedding function ϕ and
the set-level processing function. We set both the embedding function and the
processing function to be MLPs, and test the combinations of different embedding
functions and set-level functions under the benchmark training task, as shown in
Table 4.2.
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Figure 4.2: Global loss Lg of model D1-2, clipped at 50. During the initial steps
of the training, the global loss maintained at a very high level (around 10000), and
only managed to decrease tsubstantially after 2500 epochs.

ID Channel Size of ρ Channel Size of ϕ Accuracy
D1-1 1 → 32 → 16 → 8 1 → 16 → 8 9.6%
D1-2 1 → 32 → 16 → 8 1 → 32 → 16 → 8 7.8%
D1-3 1 → 32 → 16 → 8 1 → 64 → 32 → 16 10.9%
D2-1 1 → 64 → 32 → 16 1 → 16 → 8 5.5%
D2-2 1 → 64 → 32 → 16 1 → 32 → 16 → 8 11.1%
D2-3 1 → 64 → 32 → 16 1 → 64 → 32 → 16 12.0%

Table 4.2: Classification accuracy of DeepSpec variants with different channel sizes.
Models are denoted as Dx-y, where x indexes the processing channel configuration
and y indexes the embedding channel size. All models are trained on the dataset 4
bands on a 5 × 5 grid, and evaluated on the corresponding validation set.

As summarized in Table 4.2, the DeepSpec model doesn’t perform well in predict-
ing the Chern numbers. Furthermore, increasing the capacity of either subnetwork
does not lead to improvement in classification accuracy. In particular, models with
a larger ϕ (e.g., D1-3, D2-3) do not perform significantly better than those with
smaller embeddings, suggesting that the bottleneck lies not in the expressive power
of ϕ or ρ. The overall low accuracy across all configurations indicates that DeepSpec
struggles to extract the relevant topological information with invariant spectral fea-
tures directly. A loss curve of global loss Lg is demonstrated in Figure 4.2. This
indicates a need for preserving equivariant features to learn the Chern numbers more
efficiently.

TrMLP operates on traces of powers, and the maximum power to extract is a un-
trainable hyperparameter. We tested the performance of TrMLP with various model
setups. Out of the 8 settings, only 3 of them converged, while the others all failed
in the training stage due to numerical instabilities.

Since W is drawn from U(N) uniformly with respect to the Haar measure, for any
integer n, W n is uniform on the Haar measure as well. Therefore, ∀m, n, TrWm

and TrW n are identically distributed, and within the disk B(0, N). Therefore, the
increasing of maximum power and channel size is not the cause of the instability of
the MLP following the feature extraction.
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ID Channel Size Accuracy
T1 4 → 8 → 8 19.0%
T2 8 → 16 → 8 27.5%
T3 8 → 32 → 16 → 8 93.3%

Table 4.3: Classification accuracy of GEConvNet variants with different channel
sizes and kernel sizes. Models are denoted as Tx, where x indexes the channel
configuration. All models are trained on the dataset 4 bands on a 5 × 5 grid, and
evaluated on the corresponding validation set.

The 3 successful training runs, along with their evaluation accuracies, are listed
in Table 4.3. There is only one run that learned the valid quantity, achieving an
accuracy of 93.3%. This further verifies the instability of TrMLP, the reason behind
which is potentially related to initialization, and requires further study.

4.3.2 GEConvNet
GEConvNet, equipped with GEConv layers, is theoretically more expressive than
GEBLNet due to its ability to capture non-local information through gauge-equivariant
convolutions. However, the following empirical results show that GEConv demon-
strates weaker performance, and the accuracy decreases as the kernel size increases.

We evaluate GEConvNet on the task of predicting Chern numbers from synthetic
gauge field configurations under various problem settings. Specifically, we construct
GEConvNets with varying symmetry constraints and design choices, as summarized
in Table 4.4.

All models are trained on synthetic datasets generated as described in Section 4.2,
using configurations sampled uniformly from U(N)sites with random fillings. Train-
ing is conducted on a fixed grid size of 5×5 and band numberN = 3, while evaluation
is performed on a separate validation set drawn from the same distribution.

The classification accuracy of each model, is obtained by rounding the predicted
Chern number to the nearest integer. Deeper networks (C3, C4) consistently out-
perform shallower ones (C1, C2) when the kernel size is 0, indicating the importance
of depth in capturing the local structure relevant to Chern number prediction. How-
ever, as the kernel size increases (k = 2, 4), accuracy declines across all models. One
possible explaination is that, since the Chern number is defined as a summation
over entirely local quantities, this additional capacity to couple neighboring sites
has the risk to introduce redundant degrees of freedom, ultimately hampering the
performance.

Figure 4.3 explicitly compares the label of the same sample with its outputs in
model C4-0 and C4-2. As is speculated, the capability to couple neighbouring sites
eventually costs GEConvNets the capability to capture local quantities.
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ID Channel Size Kernel Size Accuracy
C1-0 1 → 32 → 16 0 44.5%
C2-0 1 → 64 → 32 0 54.2%
C3-0 1 → 32 → 16 → 16 → 8 0 91.7%
C4-0 1 → 64 → 32 → 16 → 8 0 88.7%
C1-2 1 → 32 → 16 2 23.7%
C2-2 1 → 64 → 32 2 15.4%
C3-2 1 → 32 → 16 → 16 → 8 2 35.7%
C4-2 1 → 64 → 32 → 16 → 8 2 30.1%
C1-4 1 → 32 → 16 4 22.3%
C2-4 1 → 64 → 32 4 24.8%
C3-4 1 → 32 → 16 → 16 → 8 4 23.9%
C4-4 1 → 64 → 32 → 16 → 8 4 40.3%

Table 4.4: Classification accuracy of GEConvNet variants with different channel
sizes and kernel sizes. Models are denoted as Cx-k, where x indexes the channel
configuration and k indicates the convolution kernel size. All models are trained on
the dataset 4 bands on a 5 × 5 grid, and evaluated on the corresponding validation
set.
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Figure 4.3: Comparison between the predicted local Chern density (left) and
the ground truth (right) of the same sample. The predictions are produced by
GEConvNet models C4-0 (top) and C4-2 (bottom), respectively, where C4-0 uses
kernel size 0 and C4-2 uses kernel size 2.
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4.3.3 GEBLNet
GEBLNet serves as our primary model to study. In contrast to baseline models
and GEConvNet, it possesses two key characteristics: it operates exclusively on
local quantities, and it maintains gauge-equivariant matrix features throughout the
network up to the final layer. To assess its expressibility and robustness, we evaluate
a range of architectural configurations under multiple random seeds. The full set of
results is summarized in Table 4.5.

ID Channel Size Seed Accuracy
B1-1 1 → 16 → 8 → 4 289 92.5%
B1-2 1 → 16 → 8 → 4 150 29.6%
B2-1 1 → 16 → 8 → 8 → 4 289 26.4%
B2-2 1 → 16 → 8 → 8 → 4 150 84.3%
B3-1 1 → 32 → 16 289 93.7%
B3-2 1 → 32 → 16 150 94.8%
B4-1 1 → 32 → 16 → 8 289 94.2%
B4-2 1 → 32 → 16 → 8 150 95.9%
B5-1 1 → 32 → 16 → 16 → 8 289 95.6%
B5-2 1 → 32 → 16 → 16 → 8 150 94.4%
B6-1 1 → 64 → 32 → 16 289 94.2%
B6-2 1 → 64 → 32 → 16 150 97.5%

Table 4.5: Classification accuracy of GEBLNet variants with different channel
configurations and random seeds. Models are denoted as Bx-y, where x indexes
the architecture and y indexes the seed configuration. All models are trained on
synthetic data with 4 bands on a 5 × 5 grid.

GEBLNet shows strong expressive capacity even at small sizes. For instance, con-
figuration B1 achieves an accuracy as high as 92.5%, indicating that the model is
capable of learning meaningful topological features with minimal channel width and
depth. However, this performance is highly sensitive to the choice of initialization,
as evidenced by the large accuracy gap between different seeds (e.g., 92.5% vs. 29.6%
for B1).

As the network width increases, both accuracy and stability improve. Larger con-
figurations such as B3–B6 consistently achieve high accuracy across different seeds,
with performance exceeding 94% and impact from choices of seeds significantly re-
duced. This suggests that once the model surpasses a certain capacity level, fur-
ther increases in size yield minor improvements in accuracy, yet provide robustness
to initialization. Compared with other models, GEBLNet achieves a significantly
higher and stabler performance, and as the model complexity increases, the accuracy
plateaus at a high level.

A complexity-accuracy comparison in Figure 4.4 further compared GEBLNet with
other equivariant networks in terms of parameter size. The results show the superior
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Figure 4.4: Comparison of model complexity and accuracy across different archi-
tectures. Complexity is measured by the number of learnable parameters, and sk

denotes the kernel size for GEConv layers. Each marker represents a training run
with variations in models, learnable parameters, and random seeds. See detailed
settings in Table 4.2, 4.3, 4.4 and 4.5.

performance and stability of GEBLNet across a range of model settings. Notably,
networks with more than 10,000 parameters already achieve strong expressivity,
ruling out the need for excessive capacities. Based on this observation, we adopt
configuration B4 as the optimal model, marked with the orange thick-bordered cir-
cles. Meanwhile, the black dash-dotted line at 27.2% refers to the accuracy of the
naive prediction that outputs zero Chern number for any sample, serving as the
minimal threshold for meaningful performance.

With B4-1, we push the limit of GEBLNet by increasing the band number and
complexity. The model is trained and evaluated on a fixed 5×5 grid while gradually
increasing the number of bands from 4 to 8. As shown in Table 4.6, GEBLNet
maintains high accuracy in the range of 4 to 7 bands, with performance only slightly
degrading as the number of bands increases. A significant drop is observed at 8
bands, suggesting a level beyond which the model is no longer adequate for the task.
However, as Figure 4.5 indicates, the differences between ground truths and outputs
are within a reasonable range, thus could potentially be bridged with larger capacity
or more refined structures. Despite the limitation the current model encounters,
GEBLNet shows a strong and robust performance overall.
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Table 4.6: Accuracy of GEBLNet trained and evaluated on a 52 grid.

Bands 4 5 6 7 8
Accuracy 95.9% 94.0% 93.8% 91.7% 52.5%
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Figure 4.5: Distribution analysis of GEBLNet predictions on misclassified samples
from the 8-band case. Left: comparison between the model output and the ground
truth label. Right: histogram of the prediction error (output minus label).
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4.4 Generalization of GEBLNet

4.4.1 Training on Trivial Samples
In order to test the generalization properties of GEBLNet, we train exclusively on
diagonal and topologically trivial samples. To achieve this, non-trivial samples were
manually filtered out during data generation, turning Lg effectively into ∥f(W )∥1.
We continue to adopt the benchmark training task over a grid size of 5 × 5 and
N = 4 filled bands.

In this training scenario, we first make an adjustment to the evaluation process.
Since the dataset is entirely nullified, the model is limited to learning the Chern
number up to a global, sample-independent rescaling factor, i.e.

∃kf s.t. f(W ) ≈ RfC

Here, the Lstd serves to prevent the model from vanishing to zero everywhere, i.e.
Rf = 0, by forcing the outputs to locally differ. Additionally, we evaluate on general
samples by calculating a rescaling factor

Rscale = mean{C}
mean{f(W )}

over a large set of non-trivial samples, and rescale the output as Rscalef(W ).

A naive GEBLNet model without TrNorm layers can learn the Chern number for up
to 3 bands but fails for 4 bands and above, mostly outputting zero local quantities
except for a few random seeds. Specifically, out of the 10 seeds tested, only 2 of
them result in a successful run. We attempt to solve this initialization instability
with multiple strategies.
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Seed 83 150 189 247 289
Turning Point 1393 1508 1706 1846 -

Table 4.7: Turning point of model B4 initialized with seed 83, trained on trivial
data on a 5 × 5 grid, with 4 filled bands.

Seed 160 47 189 35
Accuracy 92.7% 94.3% 95.4% 93.8%

Table 4.8: Accuracy of model B4 initialized with seed 83, evaluated on non-trivial
data on a 5 × 5 grid, with 4 filled bands.

TrNorm Layers We begin by analyzing the statistics of the absolute values of
layer-wise outputs in GEBLNet. Specifically, we examine the B4-1 configuration
trained without the TrNorm layer, which did not succeed in this training task—its
output collapses within 500 epochs. As shown in Figure 4.6, we track the mean
and variance of the output across layers for a representative batch. In the absence
of TrNorm, the variance escalates rapidly, reaching magnitudes on the order of 105

after the final GEAct layer. Given this fact, a plausible explanation for the numerical
instability and vanishing gradient is that such enormous growth of variance leads
the model to abandon the standard deviation loss entirely, preferring to nullify the
output rather than attempting to regress toward a meaningful solution.

This motivates the implementation of TrNorm. The expression given in Equa-
tion (3.6) ensures that, after each TrNorm layer, the mean value of traces across
channels is normalized to 1, which is in alignment with Figure 4.6. This cancels out
the accumulation of variance throughout the network and stabilizes the training.
Figure 4.7 compares the loss curve of B4, initialized with seed 83, with and without
TrNorm, up to the first 3000 epochs.

When TrNorm is applied, the training dynamics can be roughly divided into three
stages. In the initial phase (lasting approximately 1800 epochs), the network degen-
erates to producing near-zero outputs, indicating an inactive status. In the second
stage, the standard deviation loss Lstd decreases while the global loss Lg increases,
yet the total loss Lg +Lstd remains nearly constant, suggesting a transition into the
desired learning process. Eventually, in the third stage, both Lg and the average
standard deviation stabilize at ideal levels, and the model converges to a meaning-
ful solution. These observations suggest that a key challenge lies in shortening the
initial inert phase, and enabling the network to begin efficiently learning the target
quantity earlier in training.

The effect of the TrNorm layer is tested under five different random seeds, as summa-
rized in Table 4.7. To precisely identify the transition out of the initial inert phase
(Phase I), we define the turning point as the first epoch at which the standard devi-
ation loss satisfies Lstd < 0.49. Among the five runs, four successfully converged to
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Figure 4.7: Global loss and standard deviation loss curve of GEBLNet, with con-
figurations identical to B4, trained on a diagonal, trivial dataset, to learn the Chern
number on a 52 grid, with 4 filled bands. Up: B4 without TrNorm. Bottom: B4
with TrNorm (B4-1).

valid solutions, with their turning points occurring between epoch 1300 and epoch
1900. This suggests a generally reliable convergence with TrNorm and a consistent
duration of Phase I. Furthermore, we evaluate model B4 and study the local out-
puts of 1024 samples after rescaling, and compare the scaling factor calculated per
batch. Figure 4.8 indicates the consistency of the rescaling factor across various
samples, suggesting that the model succeeds in learning local quantities. This is
further validated by evaluation on general datasets, see Table 4.8.

Perturbation Term To further improve the robustness of GEBLNet when trained
on trivial datasets, we introduce a residual-like modification that enforces non-zero
outputs. Specifically, for the final dense layer f acting on (TrW 1

k , . . . ,TrW n
k ), we

add a nonzero perturbation component g(x), such that the final output takes the
form f(x) + g(x). Since f is linear, we require g to be nonlinear and positively
bounded from zero. In practice, we define g(x) as

gω(TrW 1
k , . . . ,TrW n

k ) = δ(1 + exp(ω))
(∑

i

(TrW i
k)2
)
,

where ω is a learnable scalar parameter and δ is a small hyperparameter (set to
0.01).

The expectation of g has a positive lower bound with respect to the hyperparameter
chosen. Letting (TrW i

k)λ be denoted as xλk,i, where λ indexes samples, we note
that Var(xk,i

λ ) corresponds to the output variance from the final TrNorm layer, as
in Figure 4.6). Denote the generic random variable from which xk,i

λ is drawn as X.

36



Chapter 4. Numerical Experiments

3 2 1 0 1 2 3
True Labels

3
2
1
0
1
2
3

Ou
tp

ut
s

Rescaled Local Quantity
Std of Error:
 0.322

0 10 20 30
3.0

3.2

3.4

3.6

3.8

Scaling Factor per Batch
Mean: 3.406
Std: 0.104

Figure 4.8: Left: comparison of rescaled local outputs with local true values.
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quantities. Right: scaling factors per batch compared with that calculated over all
1024 samples.

Then the expected value of g(X) satisfies:

E(g(X)) = δ(1 + exp(ω))NchE(X2) (4.8)

= δ(1 + exp(ω))Nch
1

Nsamples

[∑
λ

[E(Xλ)2 + Var(Xλ)]
]

(4.9)

≥ δ(1 + exp(ω))Nch

[
1 + 1

Nsamples

∑
λ

Var(Xλ)
]

(4.10)

≥ δ(1 + exp(ω))Nch. (4.11)

The inequality (4.10) follows from the normalization property of the TrNorm layer,
which enforces E(Xλ)2 = 1, ∀λ.

After introducing this perturbation mechanism, the previously failing model B4
with seed 289 successfully learned to predict on trivial samples. However, further
experiments with additional seeds revealed instability: in some runs, models that
had exited Phase I reverted back to a collapsed state, as shown in Figure 4.9. This
indicates that while the perturbation improves robustness in some cases, its behavior
is not yet fully reliable. More systematic studies and refinements of the perturbation
term are needed to stabilize its performance.

Equivariance Relaxation We also experimented with an equivariance relaxation
technique proposed by [43], which aims to improve model training and prevent de-
generate outputs by temporarily relaxing the strict equivariance constraints. In our
implementation, we applied this idea to the GEBL layers by injecting an additional
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Figure 4.9: Global loss and standard deviation loss curve of GEBLNet, with con-
figurations identical to B4 and a perturbation term, trained on a diagonal, trivial
dataset, to learn the Chern number on a 52 grid, with 4 filled bands. During the
training dynamics, the model fluctuated multiple times between valid and collapsed
states, leading to an unstable performance.

non-equivariant term of the form

hδ(W )γ
k =

∑
µ,ν

αγµνW
µ
k ·W ν

k ,

where the multiplication is applied pointwise, and αγµν are learnable coefficients.
This non-equivariant component is scaled by the current epoch δ(tepoch), and grad-
ually increases and then decreases over the course of training:

δ(tepoch) =

δ0tepoch, tepoch ∈ [1, 2500]
δ0(5000 − tepoch), tepoch ∈ [2500, 5000]

with δ0 = 0.01
5000 = 2 × 10−6. Despite the theoretical motivation, we found that this

method did not lead to successful learning when applied to trivial input data. The
model failed to converge and give nonzero outputs. However, the idea remains a
promising direction for future works, and may benefit from further tuning of both
the schedule and the magnitude of δ0.

Data Manipulation The general data sampling scheme leads to a uniform dis-
tribution with respect to the determinants, as shown in Section 2.7. On the other
hand, with the diagonal data generation scheme introduced in Section 4.2, we are
able to directly manipulate the distribution of local quantities. Specifically, the
phases of the determinants of flux matrices. We attempted to wield this capability
to guide the model toward learning local quantities by training it on biased datasets.
However, this approach did not lead to successful learning outcomes.

Nevertheless, the scheme remains valuable for other purposes. For example, Fig-
ure 4.8 illustrates that the model tends to be inaccurate near the discontinuity at
−π and π, which may be attributed to the inherent continuity of the model. This ob-
servation suggests a potential direction: by concentrating training data around these
discontinuities, it may be possible to improve the model’s precision in these critical
regions. A more detailed investigation is needed to explore this possibility.
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Figure 4.10: Comparison of model accuracy across different grid sizes. Each run,
represented by markers of the same color, has identical configurations (B4), but is
trained on grids of a different size. Each line represents a linear regression on the
corresponding run.

4.4.2 Evaluation on Larger Grid

Due to its strictly local architecture, GEBLNet naturally supports inputs of arbi-
trary grid size, making it possible to learn on a rather small grid and predict Chern
numbers over larger grids. We evaluate this generalization ability by training B4 on
5×5 grids and testing them on larger grids, such as 10×10, 15×10, and 20×20. As
shown in Figure 4.10, the model demonstrates strong generalization performance:
the accuracy decreases only moderately as grid size increases, and the drop appears
approximately linear with respect to the number of grid sites. This is likely due to
the accumulation of small local errors across the extended spatial domain.

To investigate whether this decrease in accuracy is caused by accumulated numerical
errors, we also trained B4 on 8×8 and 10×10 grids using the same architecture. The
resulting model did not outperform the 5×5-trained one when evaluated on the same
test set. Furthermore, their rates of accuracy decay are nearly identical, suggesting
similar local errors. This indicates that the observed performance degradation is not
a result of insufficient training grid sizes, but rather reflects an inherent limitation
in the model’s capacity. In other words, the architecture itself lacks sufficient depth
and width to accurately capture the global quantity.

This observation points to a future direction to explore: enhancing GEBLNet’s ex-
pressivity with either larger model capacities or novel structures. Possible extensions
include incorporating residual connections or Transformer-like structures that retain
equivariance while enabling refined analysis of local quantities. Such architectural
enhancements may allow the model to maintain high precision on significantly larger
domains.
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Figure 4.11: Global validation loss curve of B4, trained on a 34 grid, with 3 filled
bands to learn the second order Chern number C̃2.

4.5 Learning Higher Dimensional Chern numbers
We further extend the task to 4-dimensional grids, where the definition of the second
order Chern number becomes significantly more complex than in the 2D case (see
Section 2.4). In 4D, each lattice site is associated with C2

4 = 6 independent Wilson
loops, corresponding to all distinct plane directions. This increased combinatorial
complexity not only enlarges the input space but also introduces more intricate
geometric and topological dependencies across directions.

Moreover, unlike in the 2D case where the discretized Chern number is always an
integer, the 4D discretization may yield non-integer values because of approximation
errors in higher-order terms. As a result, standard classification accuracy is no longer
an appropriate evaluation metric.

Instead, we adopt the mean absolute error (MAE) of the predicted global quantity,
which corresponds to the global loss Lg. As shown in Figure 4.11, our model achieves
an MAE of approximately 0.25, indicating that the predictions are well within ac-
ceptable bounds—often within rounding error of the true topological value.

In addition to global performance, we also investigate the model’s ability to recover
the correct local quantities. Figure 4.12 visualizes a comparison between the rescaled
local outputs and the ground truth local contributions. The strong pointwise agree-
ment between the predicted and true local densities further validates that the model
is not only learning the correct global behavior but is also successfully identifying the
underlying local structure that composes the higher-dimensional topological invari-
ant. This illustrates the model’s capacity to generalize to more complex topological
settings beyond the 2D case.

An alternative strategy to learn Chern numbers accurately is to train on samples
with special spatial features, and then to generalize to general samples. In particular,
consider a product insulator whose Brillouin zone factorizes as

BZ = BZ1 × BZ2,

40



Chapter 4. Numerical Experiments

0.2 0.0 0.2
True Labels

0.2

0.1

0.0

0.1

0.2

O
ut

pu
ts

Local Quantity
Std of Error:
 0.023

Figure 4.12: Comparison of rescaled local outputs with local true values.

with corresponding Bloch Hamiltonian

H(k1, k2) = H1(k1) ⊗H2(k2).

Its Berry connection then splits as

Aµ(k1, k2) =

A1
µ(k1) ⊗ Id2 , µ along k1,

Id1 ⊗ A2
µ(k2), µ along k2,

and the second-order Chern number factorizes as

C = −2C1C2.

To generate such product-manifold samples for N bands, we randomly decompose
N = N1 × N2 and split the four momentum dimensions into two pairs. We then
sample link variables (and compute Wilson loops) separately on each factor, assem-
ble the full data via tensor product, and calculate the second-order Chern number
accordingly, up to permutation over axes.

Training GEBLNet in the B4 configuration on this product dataset yields an ac-
curacy of approximately 80% on the same product samples. However, when eval-
uated on general (non-product) configurations, performance degrades significantly.
It remains an open question whether this failure reflects a capacity limitation of
the current GEBLNet architecture or that of the discretized approximation for the
second-order Chern number. A deeper investigation into both aspects is therefore
required.
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5
Conclusion

In this thesis, we introduced GEBLNet, a novel gauge-equivariant neural network ar-
chitecture specifically designed to predict topological invariants, particularly Chern
numbers, in multiband topological insulators.

Contributions
Our key contribution lies in two aspects. Theoretically, we propose a universal ap-
proximation theorem that rigorously guarantees GEBLNet’s capacity to represent
arbitrary first-order Chern numbers, given sufficiently expressive layers and appro-
priate training data. More generally, this model could learn any gauge-invariant
function over compact matrix groups. Empirically, extensive experiments validated
the theoretical result, demonstrating consistently high accuracy and strong general-
ization across diverse lattice sizes and band configurations.

In terms of model architecture, we constructed a novel trace normalization layer
TrNorm. This stabilizes the training by canceling out the rapidly exploding outputs
throughout layers, enabling the model to predict unseen data regimes by learning
on only topologically trivial samples.

Furthermore, we extended the framework to higher-dimensional topological invari-
ants, specifically, second-order Chern numbers on four-dimensional lattices. Ex-
perimental evidence showed that our architecture can learn these more complex
invariants within reasonable approximation errors.

Limitations and Future Directions. Despite these promising results, several
important limitations remain.

On the theoretical side, our universal approximation theorem currently applies only
to first-order Chern numbers, leaving higher-order learning tasks without rigor-
ous support. Moreover, the discrete numerical scheme employed for second-order
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Chern numbers is not an exact integer-valued construction; developing an accu-
rate and gauge-invariant discretization for higher-order invariants remains an open
challenge.

Architecturally, our investigations were restricted to straightforward feed-forward
stacks of gauge-equivariant bilinear (GEBL) layers. We have yet to explore po-
tentially beneficial structural enhancements, such as residual connections, recurrent
architectures, or transformer-based modules, which could improve training stability,
efficiency, and model expressivity.

Finally, although we demonstrated the success of gauge-equivariant learning for
multiband topological insulators, the applicability of our method to other Lie group
equivariant problems remains untested.

Addressing these limitations will further enhance the capabilities and scope of our
gauge equivariant neural networks.
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