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Geometry and Symmetry in Deep Learning
From Mathematical Foundations to Vision

Applications

Oscar Carlsson

Division of Algebra and Geometry
Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Deep learning — particularly neural networks — has profoundly transformed
both industry and academia. However, designing and training effective net-
works remains challenging, often requiring extensive data and compute. This
barrier limits applicability of deep learning in domains with scarce labelled
data or limited computational budgets. One way to overcome these barriers
is to bake prior knowledge — such as geometry or symmetry — directly into
network architectures.

Geometric deep learning focuses on model and data design by leveraging the
knowledge of problem specific geometry and symmetries. Encoding this into the
pipeline can reduce sample complexity as the models do not need to learn these
structures directly from the data. Two common examples of this is equivariant
and invariant networks. Equivariant networks guarantee that when the input
is transformed the output transforms in a predictable way. On the other hand,
an invariant network is a network where the output does not change if the input
is transformed.

In this thesis we study both applied and mathematical perspectives on parts of
the geometric deep learning field. On the mathematical side I show a theory for
equivariant CNNs on (bi)principal bundles and a novel framework for equiv-
ariant non-linear maps. On the applied side the I present a study of the effects
of imposed equivariance on the data requirements and the increased data ef-
ficiency as well as the benefits of using a grid well suited for the underlying
geometry of the data.

Keywords: geometric deep learning, induced representations, group theory,
differential geometry, equivariant networks, gauge theory
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1 Introduction

This chapter serves as brief introduction and motivation to my thesis. Sec-
tion 1.1 presents my purpose in writing this thesis and section 1.4 details the
outline of the thesis. Section 1.2 presents a technical motivation of my work
from two different points of view: for the point of view of a person focussed on
machine learning and for the point of view of a person focussed on mathemat-
ics. Finally section 1.3 gives a brief summary on the result of the appended
papers.

1.1 Purpose of thesis

My intended purpose of this thesis is to present my research (Paper I–Paper
IV) as well as to elaborate on details and concepts that were omitted in the
papers — e.g., due to conferences having a stric page limit, usually around 8–9
— or presented too compactly. I also aim to present how my work fits into the
larger field and any directly applicable takeaways from the different papers.

1.2 Why should you read this thesis?

Here are three different motivations for why you should read this thesis no
matter if your background is in machine learning (section 1.2.1), mathemat-
ics (section 1.2.2), or neither (section 1.2.3).

3



4 1. Introduction

1.2.1 Motivation from a machine learner’s point of view

Geometry and symmetries can enter a machine learning problem in many dif-
ferent ways. Even if you have not thought about it in terms of geometry and
inductive bias there is generally a trade-off between model flexibility and data
efficiency. Briefly stated a stronger geometric biases yields higher sample effi-
ciency but less architectural flexibility.

As an example compare a convolutional neural network (CNN) [47, 46, 83] to
the vision transformer (ViT) [36]. One fundamental assumption — inductive
bias — leading to the CNN architecture is that features, or patters, can appear
at any position in the image with similar probability. Due to this assumption a
CNN uses shared local filters across the entire image.The geometrical inductive
bias forces the network to learn local pattern improving the data efficiency as
compared to an non-biased network having no concept of locality and having
to learn that patterns can appear in any position. This makes a CNN relatively
data efficient.

The ViT on the other hand splits the input image into patches and merge these
into tokens and then computes attention weights between each pair of tokens.
This means that each layer of the ViT can create relations or patterns over the
entire image and there is no inherent bias towards local patterns. Hence the
ViT is more flexible as it lacks the locality bias. However, the downside of this
flexibility is that more data is needed for the model to learn the relevant features
[36]. With that said it is possible to reintroduce inductive biases through, e.g.,
the use of relative positional encoding [139, 114] that can guide the layers to
attend to more local patterns while not prohibiting long range interaction.

For applications where data is limited, or generally expensive or complicated
to obtain, one can use these types of inductive biases to increase data efficiency
[17]. To achieve a well working model these assumptions must of course be
reasonable considering the task and type of data.

Geometric inductive biases does not only concern the scale of patters — local
vs global — but also their location. For the image example, as stated in the
paragraphs above, one would expect that any patterns could occur at any part
of the image with equal probability — not accounting for edge effects. Under
this assumption a CNN is a useful choice as, due to the fact that the kernel is
shared over the entire image, it acts identically on each feature independently
of where it is placed in the image.

Now, other data have different symmetries. Take, for example, graphs embed-
ded in R3 representing molecules [51]. A single molecule is equally likely to
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occur in any orientation and translation. As such the distribution of molecules
poses is E(3)-invariant [108, 165].

There are many ways to make sure that models are “compatible” with such
G-invariant data, where G is a group describing the symmetry. Echoing the
ViT above, one might take a more flexible model and train it with as many
transformed examples as possible but this requires resources and time. Or one
can modify the loss function to take this group action into account; a schematic
example would be

Lequivariance(py, x) = Lstandard(py, x) +
ÿ

gPG

}gN (x) ´ N (gx)} , (1.1)

Linvariance(py, x) = Lstandard(py, x) +
ÿ

gPG

}N (x) ´ N (gx)} , (1.2)

depending on whether the network should commute with the group action:

N (gx) = gN (x), (1.3)

that is, N isG-equivariant (eq. (1.1)), or if the network isG-invariant (eq. (1.2)):

N (gx) = N (x). (1.4)

In either case py is the ground truth for the input x. If the group G is con-
tinuous, or otherwise infinite, the sum is generally replaced by Monte Carlo
integration. However, this approach also requires applying the network N on
multiple transformed data points for each training step increasing the compu-
tational requirements.

Another approach is to canonicalise the data [70], that is to align each data
point to some “standard” orientation, and then apply a standard network on
the aligned data. An illustrative example of this is to rotate natural images
so that the sky is upward and keeping track of the rotation that was needed,
applying the network and then rotating the output of the network back to the
original rotation. This approach does however rely on that the aligning never
fails and if the alignment is done by a network than this network needs to learn
the symmetry, which requires data and training.

If one wants robustness and theoretical guarantees, even for group transfor-
mations on out-of-distribution (OOD) data, then the best way is to build this
group compatibility into the network from the start. In doing so you get the
best possible theoretical guarantees for the behaviour of the network on trans-
formed data, and due to this strong inductive bias one also gets higher data
and parameter efficiency [12, 49, 40]. Of course, through building the group
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structure into the network one does lose some flexibility.

All in all, the route one takes to deal with the geometric structures in the
problem depends on the specific task and the data that is available, and the
subfield of machine learning working with these geometrical inductive biases is
called geometric deep learning [17].

In this thesis I will discuss some aspects of geometric deep learning applied to
vision tasks: data efficiency through data augmentation or a manifestly group
“compatible” network (chapter 6 and Paper II); and the importance of a well
suited grid for spherical images (chapter 7 and Paper III).

On the mathematical side I additionally elaborate on the nature of equivariance
and weight sharing (chapter 4 somewhat connecting to chapter 2 of Paper I);
and construct a framework for general equivariant non-linear maps (chapter 5
and Paper IV).

1.2.2 Motivation from a mathematician’s point of view

A large portion of current machine learning research is driven by empirical
exploration [120].With that said, there are many different ways to approach
machine learning problems in a mathematical way [163, 75, 138]. One such
approach is to formalise the inputs as functions — so-called feature maps —
from the domain on which the data lives to a “feature space”, typically a vector
space. In this setting the layers of a neural network become maps between
function spaces. The overall network’s properties, such as equivariance, are
then directly inherited from the mathematical properties of these constituent
maps.

Cohen et al. [29] took this approach when they formalised data on a homo-
geneous space X – G/H as sections of an associated vector bundle G ˆρ V
where (ρ, V ) is an H-representation. This space of sections is isomorphic to
the induced representation which is a space of functions

IndGHρ =
␣

f : G Ñ V | f(gh) = ρ(h´1)f(g)
(

, (1.5)

together with the left regular G-action

[k Ź f ](g) = f(k´1g). (1.6)

The H-equivariance condition in eq. (1.5) is called the Mackey constraint and
is integral to the theory of induced representations [96, 95, 24].
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This perspective allows the use of large swaths of mathematical knowledge re-
lating to homogeneous spaces, group theory, and representation theory. In [29]
Cohen et al. used this setting to derive a theory which, with some assumptions
along with clarifications from [6, 7], covers all linear layers and found that they
could be written on the form

[ϕf ](g) =

ż

G

pκ(g´1g1)f(g1)dg1, (1.7)

where the kernel pκ : G Ñ Hom(Vin, Vout) satisfies

pκ(h1gh2) = ρout(h1)pκ(g)ρin(h2), @h1, h2 P H. (1.8)

Specifically, these maps are G-equivariant linear maps — i.e., intertwiners —
from the induced representation IndGHρin to IndGHρout.

One can partly use this for a non-homogeneous base space by constructing an
associated vector bundle from a principal H-bundle P and an H-representation
(ρ, V ). Then the space of functions f : P Ñ V satisfying

f(ph) = ρ(h´1)f(p) (1.9)

is isomorphic to the space of sections Γ(P ˆρ V ).

We used this approach to study local actions in chapter 2 of Paper I. Addi-
tionally we use the case with a homogeneous base space in Paper IV to extend
the theory by Cohen et al. to encompass equivariant non-linear maps. Through
this we unify several current day architectures — among others, convolutional
neural networks and transformers — in a single framework.

On the more applied side we in Paper II also investigate the data efficiency
one gets by restricting the hypothesis class of the networks to being equivariant
networks as compared to approximating equivariance in network through data
augmentation. And in Paper III we adapt the well performing SWIN model
to the HEALPix grid and hence create a model that natively works on spherical
data.

1.2.3 Non-technical motivation

Geometry and symmetries are everywhere around us. For example, a coffee
cup stays a coffee cup even if it moved from one place to another or if it is
rotated upside down. Mathematically speaking the class of the object — cup
in this example — is invariant to translations and rotations — that is, it does
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Figure 1.1: Picture of a coffee cup [154] with two “pixels” marked. For an untrained
network that should detect cups in an image both of the marked areas are equally
indicative of the presence of a cup in the image.

not change from a cup to something else due to any of these transformations.
Humans have no problems dealing with such transformations as we have a very
high level conceptualisation of objects around us and we separate the object
from its position.

However, this is generally not true for neural networks. For a neural network
to operate on something we need to represent the input in some way that
computers can understand: using numbers. An image, for example, can be
represented as an array of pixels, often arranged in a rectangular grid but it
can be represented in other ways as well.

To exemplify: assume we have a untrained network constructed for the task of
detecting if an image contains a cup or not. As the network has no conceptu-
alisation of objects, any pixel in the pictures has initially the same amount of
information on whether the image contains a cup; a pixel from the table can
be as indicative to the network as one from the cup itself. See fig. 1.1. Only by
showing many examples of many different cups in many different settings —
training the network with a diverse dataset — the network can start to identify
features that are indicative of a cup and separate these features from elements
irrelevant for the task.

A similar effect appears when one adds transformations to the picture. Specif-
ically, how to disentangle the content of the geometry. Here there are two
important factors: how one represents the data in a way that is consistent with
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Translate to the left

Flatten

?

Flatten

Figure 1.2: Different representations of a simple image. Left: a 2-dimensional,
normal, representation of an image, note that it is clear which pixels are adjacent to
each other. Right: a 1-dimensional, flattened, representation of the same image, note
that the connectivity — the adjacency of pixels — is not immediately clear. Bottom:
A shift to the left is well represented in the 2-dimensional representation (left), while
in the 1-dimensional representation (right), this shift looks chaotic.

the geometry and transformations, and the type — or architecture — of the
network.

We stay in the image domain and start with the representation of the image.
As mentioned above, an image is often represented as a 2-dimensional rect-
angular array (left side of fig. 1.2), but one can also represent an image in
different ways. One such alternative is to “flatten” the 2-dimensional image
to a 1-dimensional sequence of pixels (right side of fig. 1.2), and as long as
one knows the dimensions of the original image there is no problem switching
between the two representations. However, if we now move all pixels in the top
left image of fig. 1.2 one step to the left (bottom left of fig. 1.2) it is clear that
one representation is better suited to this transformation as the 2-dimensional
representation moves predictably while the 1-dimensional representation trans-
form in a seemingly random way (bottom right of fig. 1.2). Hence, if we want
a network operating on the 1-dimensional representation to perform a task in-
variant to this transformation we need to show the network many examples
of translated images. This is similar to how a normal network needs to be
shown many examples of a coffee cup in different settings to separate the cup
from the background, and this process is called data augmentation. As the
transformation is “simpler”, consistent with the representation, when viewed
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in the 2-dimensional representation, the amount of additional examples needed
for the network to learn the transformation should be smaller, depending on
the type of network.

The other important factor is the type of network. Certain networks behave
predictably on transformed data without seeing any augmented data. For
example, so-called convolutional neural networks (CNNs) behave predictably
when the input is translated. This allows a CNN to avoid having to relearn
the appearence of a coffee cup at different positions in an image by looking at
many translated cups; that comes “for free”. Building this symmetry into the
network is reasonable as we expect a cup in any position to still be a cup. This
is an example of an inductive bias, which are when one uses a priori knowledge
of how we expect the model to work to design the model.

Note that just having a CNN is not a carte blanche to perform well on translated
data: if we apply a CNN to a 1-dimensional representation of an image we will
no longer get the predictable behaviour under translations that we had for
the normal 2-dimensional representation. This highlights that both factors are
needed: a representation of the data which is compatible with the geometry
and the transformations, and a model which behaves predictably when the data
is transformed.

This thesis touches both parts of this from both a mathematical and an applied
angle. The mathematical part of this thesis works with building a framework
for both linear — chapter 4 of this thesis and chapter 2 of Paper I — and
non-linear maps — chapter 5 of this thesis and Paper IV — using objects
called fibre bundles and tools from differential geometry as well as group and
representation theory. The applied part of this thesis firstly examines whether
augmenting the data with a transformation not native to the representation
of the data can bring a standard model up to the level of one whose architec-
ture already encodes these transformations — see chapter 6 of this thesis and
Paper II. Secondly, this thesis examines the potential benefits of choosing a
representation of the data which is compatible with the underlying geometry
and modifies a model to work with this representation — chapter 7 of this
thesis and Paper III.

1.3 Short summary of papers and results

In this section I provide a short summary of the included papers and their main
result.
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1.3.1 Paper I

This paper presents a review of different methods in geometric deep learn-
ing (GDL) from a mathematical view on gauge freedoms in neural networks
(Chapter 2 in Paper I) to equivariance in linear layers on homogeneous spaces
(Chapter 3) and spherical convolutions (Chapter 6). The paper recounts some
of the main approaches available in the literature and expands on details that
were either missing or not clear in the respective works.

1.3.2 Paper II

This paper extends the spherical CNN by Cohen et al. [28] and studies the data
efficiency of this equivariant network when compared to data augmentation for
an ordinary CNN. Explicitly, this paper investigates if the performance of the
inductive bias provided by the more sophisticated (extended) spherical CNN
can be matched by a simpler network only through data augmentation. We
find that this is possible for certain tasks but not for all tasks implying that the
inductive bias granted by the equivariant spherical model cannot fully be learnt,
or matched, by a simpler network, and hence that these sophisticated methods
might be a good choice for more intricate tasks with a strong geometric prior.

1.3.3 Paper III

This paper presents a vision transformer called HEAL-SWIN that natively work
with spherical images, such as images from fisheye cameras which are common
in drones and current day vehicles. We show that this model outperforms one
of the, at the time, premier architectures and performs well at different tasks.

1.3.4 Paper IV

This paper takes inspiration from previous papers — mainly [29] — which
provided a mathematical foundation for linear layers for data on homogeneous
spaces and extended this theory to provide a framework to model equivariant
non-linear layers for data on homogeneous spaces. Additionally, we show that
several of the most used architectures appear as special cases of this general
framework and through this unify, e.g., CNNs and transformers.
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1.4 Outline

This thesis contains several independent parts and sections. Firstly, chapter 2
presents a very general and high level introduction to the history and important
concepts of artificial intelligence and machine learning. Chapter 2 can easily
be skipped for a reader well versed in the topic.

Part II deals with the mathematical elements of my work and is split into the
following chapters: Chapter 3 introduces some of the necessary mathematical
concepts for the later chapters and can be skipped for readers with background
in group and representation theory and fibre bundles. Chapter 4 expands on
chapter 2 of Paper I. Specifically, chapter 4 presents an alternate viewpoint
of the equivariant map in chapter 2 of Paper I. Chapter 5 gives a short in-
troduction to Paper IV which sets up a mathematical framework for general
non-linear equivariant maps.

Part III deals with the applied aspects of my work and is split into the follow-
ing chapters: Chapter 6 presents an introduction and motivation to Paper II
which investigates how data augmentation stack up against manifest equivari-
ance. Chapter 7 gives an introduction to the HEAL-SWIN model which is the
centre piece of Paper III.

Finally, part IV shortly states the conclusions of this thesis and future research
directions.



2 History and general
knowledge

Machine learning (ML) and artificial intelligence (AI) is an immense field with
an already exceptional impact on society, both technically and socially, and
its influence will probably only increase with time. As a consequence it is
important to have a good understanding of what is going on, how it can affect
society, generally how it works, some limits, as well as current challenges and
problems. This chapter aims at answering some of these questions from a very
high level as well as setting the stage for the rest of this thesis.

Readers familiar with the history and central concepts of AI and machine learn-
ing can safely skip this chapter.

2.1 Brief history of AI and machine learning

The history leading up to the current state in machine learning and AI is colour-
ful and starts earlier than one probably would have guessed. In this section I
will give a brief summary on the general history of AI and machine learning,
for the interested reader, please see e.g. Crevier [32] for a good summary and
analysis up to the early 1990’s.

Interestingly, but not very surprisingly, the meaning and use of the term AI
has changed over time. Marvin Minsky defined in 1968 AI as “the science of
making machines do things that would require intelligence if done by men.”
[105, p. V] and this definition has held to today. Early on this was realised
through knowledge bases and hard coded rules that the system would combine
and use to arrive at conclusions. These were called expert systems, and did not
use or need any training data. This is contrasted to the machine learning used

13
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in modern day which uses few, if any, hard coded rules and learns essentially
everything from data. As such I will try to give a brief, or maybe not so brief,
historical summary concerning both tracks leading up to current day.

The start of the track leading up to the methods of modern day started with
the artificial neuron. This was a mathematical model of a neuron proposed
by Warren McCulloch and Water Pitts in 1943 in which the neuron fires if
the number of excitatory inputs was bigger than some threshold and no inputs
were inhibitory [100]. This concept was picked up and refined later to become
the basic building block of the later appearing perceptron and fully connected
neural networks.An important work building on these artificial neurons was the
paper by Herbert Robbins and Sutton Monro in 1951 that published a method
for stochastic approximation [124]. This method was later the foundation for
the stochastic gradient descent used everywhere in modern machine learning.

However, AI was not really considered a separate field of research until 1956
when Claude Shannon, John McCarthy, Nathaniel Rochester and Marvin Min-
sky arranged the workshop Dartmouth Summer Research Project on Artificial
Intelligence [99]. This workshop is currently considered as one of, if not the,
founding event for the field of artificial intelligence [144]. Machine learning as
a term is younger than AI and was coined by Arthur Samuel in 1959 [132, 20],
who was an IBM employee at the time.

The next step for machine learning was taken by Frank Rosenblatt who invented
the “perceptron” in 1958. The perceptron consists of several artificial neurons
organised in layers where the output of one layer is used as the input of the
next layer [125]. Rosenblatt also introduced the terminology “back-propagating
error correction” in 1961 but on a high level without any implementation details
[126]. Concurrent with Rosenblatts perceptron, and progressing the rules based
AI, McCarthy started developing LISP in 1958 [32, p. 60] with the intention
of creating a programming language for AI. Later, in the middle 1980s, there
was a large industry in producing microcomputers called “LISP machine”s that
were specialised in running LISP programs [32, p. 200].

Towards the end of the 1960’s, specifically in 1967, Shun-ichi Amari published
the first multilayered neural network, i.e. sending information through several
processing stages — layers — that was trained with stochastic gradient descent
[2]. Following this, in 1969, Marvin Minsky and Seymour Papert published
a book Perceptrons: An Introduction to Computational Geometry [106] on
the limitations of these early perceptron networks. In particular, they showed
that perceptrons could not reproduce the simple XOR-function. This reduced
the general interest in continued research and funding connected to neural
networks dwindled [129, p. 22]. However, in the following year, Seppo Lin-



2.1. Brief history of AI and machine learning 15

nainmaa, a master student at the time, published Fortran code for the modern
version of automatic differentiation method [92, 136].The automatic differen-
tiation method allows for automatically update a networks weights based on
observed behaviours and became a universal cornerstone in machine learning
algorithms. Now automatic differentiation is known as backpropagation and is
a cornerstone in the training of almost all modern neural networks.

Inspired by the work of the British on breaking the German codes during
the second world war, people saw translation between languages or comput-
ers interpreting natural language as a task not much more complicated than
breaking a cipher [32, p. 110]. As a consequence The Defense Advanced Re-
search Project Agency (DARPA) poured several million dollars into various AI
related language projects during the late 1960s and the early 1970s. One such
project attempted to construct a hands free interface to military equipment
using natural language. The project seemed to have some promise on a small
vocabulary of around 1000 words, but under more scrutiny a large part of this
was due to a quite restricted grammar. DARPA was quite disappointed by this
and cut almost all AI funding in 1974 [32, p. 117].

This setback, along with the Minsky’s book pointing out the limitations of the
perceptrons and a critical report in 1973 by Sir James Lighthill which stated
“In no part of the field (of AI) have the discoveries made so far produced the
major impact that was then promised” [90], caused the interest and funding
to cool off further resulting in the first, so called, AI-winter lasting between
approximately 1974 and 1980. Although funding was scarce during this period
a lot of researchers continued working on AI-related projects.

At the end of the first AI-winter, in 1979, Kunihiko Fukushima published the
Neocognitron ([170, original, in Japanese] [46, English translation]) which recog-
nised handwritten Japanese characters using a learned convolutional kernel,
superseding Fukushima’s previous work where the kernels were hand-designed.
The Neocognitron later inspired the convolutional neural networks [84].

General interest in AI grew again an in the early 1980’s and on the machine
learning side John Hopfield — who got the Nobel Prize in 2024 — introduced
Hopfield networks [63]. These are a type of recurrent neural networks which
uses loops to create a semblance of memory. However, this network type was
already published by Amari in 1972 [3] and was not cited by Hopfield. Due to
this some people call these networks Amari-Hopfield networks. About 14 years
later the modern day use of backpropagation of errors was popularised in 1986
by Rumlehart, Hinton — who got the Nobel Prize with Hopfield in 2024 —
and Williams, who used Linnainmaa’s algorithm to train a network [128].
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On the side of the rules based AI systems so called expert systems saw a lot of
interest and development in the early half of the 1980’s. The purpose of expert
systems was to replace an expert, often in either configuring or diagnosing
other systems. These were often constructed by using a database of rules and
knowledge which the system would use in recommending actions [32, p. 197–
201].

The increased engagement and development resulted in heavy investment into
research and development. Roger Schank and Marvin Minsky saw this and try-
ing to cool the general sentiments warned in 1986 that the general enthusiasm
and optimism in and on the industry was too high. Specifically they stated
that the expert systems pushing this AI boom was based on old programming
methods fuelled by increased computing power from newer hardware and would
not continue to meet the expectations. This was unfortunately realised as the
databases grew and the maintenance needed to keep the systems up to date
became unmanageable [32, p. 203&204].

Following the optimism, Apple and IBM in 1987 produced their own micro-
computers with the purpose to challenge the dedicated LISP machines. As
the LISP machines outperformed by the new computers by Apple and IBM
meant that there were little sense in staying with the more expensive and spe-
cialised LISP machines. This caused a market collapse and multiple companies
lost millions of dollars [32, p. 210] resulting in the second AI-winter lasting
approximately between 1987 and 2000.

Up to this point there loosely existed two branches of AI: the formal one of the
expert systems and the data driven one of neural networks. However, by the
late 1980’s the interest in the formal systems had faded. A key limitation of this
approach is the so-called qualification problem [32, p. 120]: in practical settings,
rule-based systems struggle to accommodate an infinite range of unforeseen
scenarios as this would require defining rules for all possible cases.

This limitation became evident in complex, real-world applications. For in-
stance, there was an early optimistic belief that complexity was not in the
mind but rather in the environment [143, p. 51] and hence any problem could
be solved if one just discovered the correct set of rules. Based on this belief
the U.S. military started a project in 1983 with the goal of developing an au-
tonomous vehicle capable of navigating terrain at speed, use camouflage and
cover natively [32, p. 210]. As we know today, the problem of autonomous
vehicles is not so easily solved.

The reoccurring realisation that the complexity does not only lie in the envi-
ronment were one of the factors pointing to the modern data driven approach
where neural networks learn patters and actions from data or by interacting
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with environments. To this end, in 1989 Christopher Watkins introduced rein-
forcement learning [157] which allows models to learn through trial and error
through interaction with some environment.

Machine learning, the data driven part of the field of AI was dormant until
around 2009 when the ImageNet dataset was released [34] and started the, still
ongoing, AI-boom. An annual competition was held on ImageNet and in 2012
this competition was won by Alex Krizhevsky, Ilya Sutskever, and Geoffrey
Hinton with the deep convolutional network AlexNet [80] beating the runner
up in top-5 error rate by 10.8 percentage points. They conclude that the reason
for this success was that the network consisted of many layers; making it a deep
neural network (DNN). This was computationally expensive, but using GPUs
made it feasible. Hence the field of deep learning was born.

All this laid the groundwork for the recent successes within the AI field. Just to
name a few: In 2016 Google DeepMind’s AlphaGo [140] — a Go-playing neural
network trained through self-play (reinforcement learning) — beat Lee Sedol
by 4 to 1; at the time Lee Sedol was regarded as the strongest Go player in the
world; Continuing their highly impactful work DeepMind published AlphaFold
2 and 3 during 2020-2024 [69, 1] which has had a huge impact in medicine and
biology: shortening the process of determining the structure from taking years
to only seconds with high accuracy [35, 79, 87]; DeepMind have also made great
progress in using machine learning models for weather prediction resulting in
the GraphCast model which can generate a 10 day prognosis on a single GPU
in under a minute — for comparison the otherwise leading traditional model
(ECMWF HRES) takes hours on a supercomputer and GraphCast delivered
more accurate predictions for over 90% of the predicted weather variables. In
addition to these advancements, one should not forget the immense develop-
ment in large language models — and other types of generative models — that
has happened the past year. As it stands, the field of machine learning and AI
has never been larger and progress seems to only be accelerating.

In his book from 1993, Crevier [32, p. 215] writes “It is not yet clear whether
this headway of neural networks is a victory or a defeat for artificial intelligence
as a field of scientific inquiry.” and contrasts the neural network approach to
that of the symbolic manipulation of “conventional AI”. With the benefit of
hindsight of the last 30 years in hand I feel pretty confident in saying that, yes,
this approach has been a victory for the field of artificial intelligence.

However, with that said, in this thesis I will discuss the benefits of not just
learning everything from data but what can be gained through injecting prior
knowledge of geometry or symmetries in the problem. In a sense this would be
a moderated approach of the modern data driven approach.
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2.2 General introduction to AI and machine
learning

This section deals with introducing AI and machine learning on a high level.

2.2.1 Terminology and fundamental concepts

In this section I will, with minimal technical details, introduce some general ter-
minology and fundamental concepts that will help readers new to this material
orient themselves in the general discourse and will serve as a good foundation
when introducing more abstract concepts. As this introduction is focussed on
introducing the central concepts it is, by necessity, light on technical details.
Hence everything presented here are simplifications and generalisations, for
more details on the material presented here please see [129, 53].

The hierarchy of AI

One can immediately see that Minsky’s first definition of AI: “AI is the science
of making machines do things that would require intelligence if done by men.”
covers a large swath of different systems depending on your interpretation;
everything from the first rule-based expert systems to modern large language
models. In modern day there is a trend of calling all “intelligent” software sys-
tems for AI, which, while this aligns with Minsky, it removes nuance from our
terminology and discussion. Call these systes AI without thinking can mislead-
ingly suggest such systems have general human-like intelligence, whereas until
very recently most AI systems were narrow — trained for a single specific task.
Although there is no exact definition, in modern nomenclature, a human-level
intelligent system proficient at a wide range of tasks would be referred to as
artificial general intelligence (AGI).

In reality, most software called “AI” today is a machine learning model, or
just in ML circles just “model”. A model is a system whose parameters —
the numbers defining how a model functions — are learnt from data as op-
posed to explicitly coded by hand. In this thesis I will generally use the short
form “model”, but in general discussions I may still refer to AI in the broader
sense. The training process results in models which, often, fall under Minsky’s
definition of AI but without the mysterious shimmer.

I will now discuss the hierarchy of AI in more detail, see fig. 2.1.
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Figure 2.1: The hierarchy of artificial intelligence. AI includes all programs and
algorithms doing something that otherwise would “require intelligence”. Machine
learning (ML) is the subset of AI these where parameters of the model are updated
based on data. Representation learning is the subset of ML where the algorithm
decides what to focus on, often with no human input. Deep learning (DL) is the subset
of representation learning where the model processes the input data over several stages
(layers). Reproduced with inspiration from [53, fig 1.4].

Specifically AI is an umbrella term covering all possible “intelligent” programs.
An example of this would be the expert systems of the 1980’s. The next level
down is machine learning which covers all algorithms where a model uses pa-
rameters, a set of numbers, which are automatically updated during the train-
ing process. Examples of simple machine learning includes linear regression
which deals with fitting straight lines to data. In this setting the learning
means finding the best parameter values for the line. A special case on linear
regression is the methods of least squares which uses properties of the problem
to find optimal parameters in just one step of linear algebra.

Sometimes, especially early on, these machine learning models use human de-
signed features for learning. A feature is some specified combination of the
input data.1 For example, if one is interested in predicting house prices, one
input could be the area and one input could be the number of rooms. With
these one could create a feature by dividing the area by the number of rooms
to get the average room area, then the model combines these features through
the parameters to get a prediction of the house. However, this requires that
humans choose and design what features we think are relevant.

This leads us to the next step in the hierarchy which is feature learning. For
models performing feature learning it is left up to the model to find the, hope-

1Often one calls each element in the input data an input feature.
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Figure 2.2: Schematic figure of a deep neural network (dnn). The input data is fed
to the input layer which process this data in some way before sending it to the next
layer. The layers between the input and output are generally called hidden, or latent,
layers which each performs more processing until the data reaches the output layer.
How one design and interpret the output layer depends on what the model is used
for, but an easy example is how certain the model is that the input data is certain
classes.

fully relevant, combinations of the input data to form the features. Often a
machine learning model is built using several layers where, roughly speaking,
each layer processes the output of the previous layer. See fig. 2.2. In this
nomenclature the input is referred to as the input layer and the output as the
output layer; all layers between the input and the output are called hidden
layers. The representations learnt in these hidden layers are often called latent
representations. The final step in the AI hierarchy is Deep learning in which
the model consists of many hidden layers.

A common example of a machine learning model is a neural network which
exists in several forms. A simple example is a fully connected neural network.
Simply speaking a fully connected neural network encodes input data as a set
of numbers, called input nodes. Then these numbers, nodes, are processed in
the first layer by being combined and mixed. The exact mix of these nodes is
specified by a set of weights, or parameters, and the result are sent as the input
to the next layer. See fig. 2.3 for a visual representation of a simple neural
network.
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Figure 2.3: Visualisation of layers in a fully connected neural network. Each arrow
has a number associated to it, the weight, and all arrows coming into a node determine
how the data in the previous layer is mixed.

General information on machine learning models

This section will introduce some general concept relating to machine learning
models.

For a general understanding of machine learning models it’s necessary to have a
rudimentary knowledge of the broad types of models. Roughly speaking, there
are two large categories of models discriminative models and generative models.
A discriminative model2, or a classifier, learns to predict the probability of the
input being a certain class or having some property

p(yclass|xinput), (2.1)

that is “What is the probability of yclass given xinput?”. One can then use this
to categorise data. For example, a discriminative model for image classification
could assign probabilities to the possible contents of the image. A real world
example of this is a model that looks at images taken from cameras in vehicles
and tries to classify the objects in the image.

Opposed to a discriminative model which uses the input to infer its properties

2The name comes from the model being able to separate — or discriminate — between
different data.
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or class, a generative model learns the joint probability

p(yclass, xinput), (2.2)

that is “What is the probability of having both yclass and xinput?”. Often one
uses this to select the yclass and then generate the “input” xinput [13]. An
example of this is the well known ChatGPT which iteratively generates the
next word given by the most likely word, roughly, in a sequence started by a
given text prompt.

A discriminative model is often trained with supervised learning which assumes
one knows the true pyclass — the, so-called, ground truth — for each xinput.
During training the model guesses the output yclass for the input xinput and
then one compares the guessed yclass to ground truth pyclass. How well the
predicted yclass aligns with the true pyclass is measured by some loss function.A
common choice is the distance between pyclass and yclass, that is how far the
model was from being correct. The model weights are then updated to make
the previous guess more accurate.

During training the models performance is tracked by some, so-called, metric.
A common choice is to keep track how often the model guess correctly, that is,
its accuracy.

On the generative side things are more fuzzy. One way to train generative
models is giving it data and have the model recreate the data — this is especially
common for autoencoders. While in the supervised learning for discriminative
models the choice of loss has clear candidates, the same does not hold for
generative models. If trained in the way mentioned above, one can take the
loss as the distance between the input and the output, and update the weights
to minimise the error. But if there are many “correct” outputs it is much
harder to pick a good loss function [48].

Often a model is built from several parts. One common setup is to have two
general parts: one encoder and one decoder. Intuitively, the encoder part
takes the input and learns usable features of these data which are the latent
representation. The decoder then takes this latent representation and computes
the output based on this.

To illustrate this, consider the following scenario: I describe an image and
describe it to after which you proceed to draw it. In that scenario I encode
the information in the image into words — the latent representation — and
you decode the words into an image. Hence, the purpose of the encoder is
to extract the relevant higher level, or conceptual, information from the more
detailed inputs.
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Figure 2.4: A schematic visualisation of an encoder and decoder. An input image
is fed to the network and the encoder computes a (learned) latent representation.
After this the decoder takes the latent representation and computes an output from
it. For a discriminative model the output is some prediction on the input — e.g.,
predicting the model of the car. A generative model takes the latent representation
and generates an output that could reasonably come from the training data. By
adding noise to the latent representation, one can generate variations on the training
data. Image of car from [15].

A discriminative model for classifying, e.g., car models in images can also be
put into this context: I describe the input image to you and you guess what car
is in the image. Again I form the encoder encoding the highly detailed image
into abstract concepts and you decode my description into a guess of the car
model. See fig. 2.4.

Data and learning algorithms

The process of training a machine learning model, or making the model learn,
means using some algorithm to change the weights of the model in order to
improve the model performance with respect to some metric.

To train a model one generally needs data in some form. Data exists in two
broad categories: Labelled data for which each element in the dataset has a so
called ground truth or labels which states what is “correct” for that data point;
and Unlabelled data where these ground truth, or labels, are not available. The
set of all data points one has access to is generally called a dataset.

A model is usually trained on a part of the dataset, called the training data, and
its performance is usually tested after training on the test data. Importantly,
the test data should not be available to the model during training since then
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Figure 2.5: A sample image from the MNIST dataset (left) and a random 28 ˆ 28
image (right).

the model can learn the test data eliminating its usefulness as a test. Often, a
part of the available data is used to validate that the training progresses and
that the model learns reasonable things. This dataset is called validation data.

One generally important concept when it comes to data is the data distribution.
On a high level the distribution of a dataset is the spread of data in that dataset.
For example, a dataset consisting of dogs and cats can look widely different
depending on what breeds are included on each side; in this example the spread
of breeds affects the distribution. Loosely speaking, one wants the distribution
of the training data to be similar to the test data, or wherever the model would
be used. Any data outside the distribution of the training data is called out-
of-distribution. If the training data in the mentioned example only consists
of images of golden retrievers for the dogs and sphynxs for the cats, then one
would not expect a model trained on this dataset to be very good at classifying
other breeds as dogs or cats. This is because they would not have been seen
by the model during training and are as such out-of-distribution.

Finally, an intrinsically geometric property of data is the concept of effective,
or intrinsic, dimension. This is most easily explained through an example:
The MNIST dataset [85] consists of 60 000 scanned samples of handwritten
digits where each sample is a picture of 28ˆ28 pixels; see fig. 2.5. Naively, one
could think that this means that the dataset is 28 ˆ 28 = 784-dimensional as
each of the 784 pixels could be varied independently. However, if one were to
randomise all 784 pixels independently the result would never be a handwritten
digit. This is because in any image of a digit no pixel cannot be fully indepen-
dent of the other. In some sense this shows that not the entire 784-dimensional
space are valid data points, in fact the dimensionality of the valid data is much
smaller. A study published at ICLR 2021 [116] estimated the intrinsic dimen-
sion of MNIST to be around 12. Hence, around 12 independent coordinates in
the latent representation are enough to encode all relevant information of an
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MNIST image. This around 12-dimensional space containing the relevant data
of the MNIST dataset is called the data manifold and is an example of the
manifold hypothesis [42] which claims that most data encountered naturally is
rather low-dimensional. The manifold hypothesis and exactly how this relates
to training and model generalisation is under debate, especially when it comes
to natural language [117], but it seems reasonable for image data[53].

Once data is available one can train a model on the data. During training,
or learning, the model parameters are updated from feedback on how it per-
forms based on the chosen loss function. When the model weights does not
change significantly any more the training is said to have converged. There are
several broad categories of learning algorithms: supervised learning, unsuper-
vised learning, reinforcement learning, and evolutionary algorithms. Which one
chooses depends a lot on what type of data one has access to.

When training a model using supervised learning one compares the model out-
put for a given input to the ground truth for that data point. Hence supervised
learning requires labelled data. Then you update the weights of the model so
the previous guess is improved. For example, in the case of supervised learning
for image classification you want to update the weights of the model so that
the likelihood the model gives to the correct class increases.

Unsupervised learning means that you update the model’s weights so that it
finds pattern and relationships between the data points without previous knowl-
edge of the data or its meaning. This is most useful when the dataset lacks
labels. An example of this is clustering where one updates the weights of the
model so that data points with similar features are grouped together. Specif-
ically, without labels, one could cluster images of dogs and cats so that the
model outputs similar values for all cat images and clearly different values for
all dog images.

Reinforcement learning (RL) is a completely different process where the model
takes the position of some kind of agent and taking actions in some environ-
ment. The actions, or the result of the actions, are then assessed against some
metric and the model weights are updated based on the assessment. One bene-
fit of using RL to train models is that using human curated data always, either
directly or indirectly, constrains the data to a human perspective and often
limiting the model, and by using the model generate its own data by interac-
tion with the environment it is possible to lessen the human bias. This was,
for example, observed as after DeepMind’s Go-playing model AlphaGo [140]
— which was initially trained on human games — beat Lee Sedol 4-1, Deep-
Mind trained the model AlphaGo Zero [141] using only self play. AlphaGo
Zero started with only the rules of the game and after playing only against
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itself it surprisingly and convincingly beat all previous models trained using
human games. A version of reinforcement learning is reinforcement learning
with human feedback (RLHF) in which, in addition to the normal feedback and
grading of the models actions, a human also gives feedback to the model. This
is generally done with the intent of aligning the model with humans: making
it more understandable and human in its actions. Although one can make RL
models more “human” by using HF this can also (re)introduce human biases
into the model. With that said, even for pure RL without HF the metrics and
environments are designed by people and hence might inject biases or priorities
unknowingly.

Based on this some people see RL as a fundamental cornerstone in future
machine learning models as this allows the models to escape the limitations of
human data. Silver and Sutton from DeepMind calls this the Era of Experience
[142].

Evolutionary algorithms is again a different training process, although more
akin to RL than supervised or unsupervised learning. Generally speaking this
is a wide class of training algorithms and when using an evolutionary algorithm
to train a model one generates a set of models with different parameter values
and check how they perform. Then the worst performing models are deleted
and variations, mutations, on the best models are created. One can also mix
the different models to create “offspring” through other avenues than mutation.
If one does this, it is called a genetic algorithm. Through this, the training tries
to mimic natural selection.

Recently DeepMind utilised a version of evolutionary algorithms to let their
new model AlphaEvolve discover new algorithms in mathematics and coding
[109].

This thesis will only discuss the case of supervised learning for discriminative
models.

When training a model, its weights are updated to capture and represent pat-
terns in the training data. How well a model generalises is a measure on how
the model performs on unseen data. During training, however, it is possible for
the model to reproduce the interesting properties of the training set perfectly;
in some sense, memorising the training set. If not dealt with correctly, this
could lead to overfitting where the performance on unseen data degrades due
to the model only learning the training set. There are methods to counter this,
these are however out of scope and will not be discussed here, even in brief. For
a while people used this as an argument against scaling up networks, as more
parameters just makes it easier for the network to memorise the training data
and this is an example of the bias-variance trade-off . However, this does not
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hold as when scaling model sizes over a certain threshold the models generalise
better again [14]; this is called the double descent [134]. The double descent
effect is what is underpinning the enormous large language models of today.

To keep track of the models performance and warn of overfitting one can use
different metrics. Metrics are different functions used to keep track of the
models performance. The first and often most intuitive metric, at least for
classification tasks, is model accuracy. The accuracy of a model is defined as
the total correct classifications divided by the total number of predictions the
model has made. This seems like a perfectly good metric, but all metric have
pitfalls.

When it comes to the accuracy metric this is clear when the dataset is imbal-
anced. For example, if one has the task of predicting if a patient has a medical
condition from measurement data and the dataset contains 99% healthy peo-
ple, then the model can achieve a very high accuracy (99%) by simply ignoring
all sick patients. A model is never perfect, so observing this behaviour from
an accuracy score of 99% would be essentially impossible to separate form a
model that actually identifies all sick patients.

This brings up the concepts of true and false positives and true and false
negatives when it comes to binary classification — that is classifying something
into two classes, e.g., into true and false. A true positive is when the model
predicts something being true and it is true. A true negative is when the model
predicts something being false and it is false. A false positive (type I error) is
when the model predicts something being true (e.g., a patient has a condition)
when it is false (they do not). A false negative (type II error) is when the model
predicts something being false (e.g., a patient not having a condition) when it
is true (they actually do). Depending on the application one has to decide on
if type I errors or type II errors are worse and select a metric that measures
what matters.

To aid in this, one often uses many metrics to keep track of different aspects of
the models performance. The precision metric checks how many of the models
predicted positives are actually positives, for example, how many of patients
the model predicted as sick are actually sick. The pitfall for this metric is that
if the model predicts no-one as sick, or only the extremely clear cases, then
the model will have perfect precision. Then there is the recall metric which
checks how many of the actually positive points are predicted positive by the
model, and this metric can be optimised by predicting everything as positive.
These are just some examples, there are many more metrics to track the models
performance based on what the model tries to do.

The above discussion shows that one should never rely on a single metric, but
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rather use a combination and always be aware of how the different metrics can
fail to capture unwanted behaviour.

Often training a model from the ground up is not feasible — either due to lack
of data, compute resources, or other reasons — and in that case one can take
a model already trained, hopefully on a similar task or dataset, and fine tune
the model. When fine tuning a trained model you take the model and train it
on data for the specific application you want to use the model for. The concept
is that the majority of the training is already done on a more general task so
the changes needed to specify the model to a more specific task would not be
that big.

A different version of this is transfer learning in which one only updates the
weights of the final layers. The underlying concept is that a lot of the earlier
layers should work with more concrete information, e.g. colours and edges in
the case of images, so one can use these layers as they are and only update
the later ones when the information is more semantically meaningful for the
application. As one trains a smaller part of the network less data is needed for
this.

2.2.2 Geometric deep learning

For more details on this section see [19] or the later proto-book Geometric
Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [17] and its
associated course [18].

In many cases a problem, or dataset, contains some symmetry. An example of
this is identifying cells in microscopy images where the rotation of the image
will not affect the cell types; see fig. 2.6a. Another example is when working
with graphs where the relative position of each node is important, e.g. molecules
where each node is an atom and each edge is a bond; see fig. 2.6b. In that case
moving or rotating the entire molecule will not affect its properties.

These are examples of data with a transformation — group — symmetry and
if we has a task of determining the cell types or some property of the molecule,
these tasks would be invariant to the group symmetry. The field of geometric
deep learning (GDL) [17] is a subfield of machine learning which works with
incorporating group symmetries — or other geometrical aspects — into the
training pipeline. This could be by modifying the models, finding better ways
to represent data, or through some other method taking advantage of the known
geometrical properties.

In both of these examples — molecules and images of cells — the symmetry



2.2. General introduction to AI and machine learning 29

stems from the fact that when working with the data we are making some
choice in how we represent the data: the orientation of the image or the global
offset or rotation we give to the molecule. This choice is arbitrary and does
not affect the underlying system, although it changes how the system looks in
the chosen coordinates. In physics this appears rather often and is referred to
as a, in this case global, gauge symmetry.

Just because the underlying system is independent to this choice of representa-
tion does not automatically mean that models are.This is because the system
needs to be expressed in coordinates, or some other numerical representation,
to be passed to a network and this numerical representation changes with the
change of coordinates. Due to these — in some sense arbitrary — changes in
the numerical representations a single system might look completely different
to a network. Now, if the network is not consistent under the changes coming
from changing coordinates one can get vastly different output for the same
system. And worse, these outputs might have no relation to each other. The
natural question is then: “If we know that this choice of orientation does not
matter for the underlying system, then how does we make sure that the models
respect this symmetry?”

The set of assumptions that the developer uses or builds into the system is
called inductive bias. For example, that the underlying system is unchanged if
we pick a different coordinate system. There are different ways of introducing
an inductive bias for these symmetries.

The first approach is to let the model learn everything from the data without
further restrictions. Often, in the case of the examples presented here, this
amounts to moving or rotating the data, including the ground truth where
needed — for example when we want to detect both the type of cell, which
does not change with rotations, and its position, which does change with rota-
tions — through all relevant angles. This is an example of what is called data
augmentation in which one transforms the training data so that the model
experiences different representations of the data, and in this way makes the
training set larger. One benefit of this is that it is very easy to implement
as it requires no modification of the model, only the dataset, or possibly the
training, needs to be altered. The downside however, is that the training set
becomes much larger — as all transformed samples are added to the dataset
— and in turn the model needs more training time and resources in order to
converge.
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(a) Example of cells. Image from [97]. (b) Example of a molecule, visualised from
[65].

(c) Example of cells. Image from [97]. (d) Example of a molecule, visualised from
[65].

Figure 2.6: Examples of data points from data which exhibit some symmetries.
Note that the cell positions just move (the marked positions) under rotation, but
the force noted in the molecule (the arrow) is both moved and rotated. In both of
these cases the underlying symmetry comes from the fact that there is no preferred
orientation of these systems, how the features, e.g. position and force, looks depends
on how we view the data point and will hence change, e.g. move and rotate, when we
change how we view the data.
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Additionally, models trained with data augmentation can only be expected
to respect the symmetry existing in the (augmented) training distribution,
and one have no guarantee for how the models behaves on out-of-distribution
data. For example, this means that if we augment the data only with 90˝

rotations, then we only knows that the model respects the symmetry of these
90˝ rotations. Any object that exists in the training data but viewed at 45˝ can
give a drastically different response than if viewed at 0˝ or 90˝. Furthermore,
you have no guarantee that the model will respect this symmetry on any object
outside the training distribution. E.g. if you train your model to be invariant to
90˝ rotations — e.g., an image of a dog rotated by 90˝ yields the same output —
by augmenting the dataset, then the model might still give completely different
outputs for a car depending on the rotation of the image.

Another approach, which is the one relevant to this thesis, is when one encodes
this symmetry into the model itself and thus gets theoretical guarantees that
the symmetry will always be respected no matter if the model is trained or
not. This also gives guarantees for out of distribution data, that is, one has
a guarantee that the model will be consistent under transformations even for
data it has never seen which is not true if one uses data augmentation.

However, this approach has downsides as well. The main one is that requiring
this property puts constraints on the possible models one can construct and
actually understanding how or why they work is theoretically demanding. Ad-
ditionally, by their nature, models respecting the built in symmetry are less
expressive and they might be more difficult to train [89, 155, 77]. There are
however methods to improve the performance and training of such models, see
e.g. [113, 115].

In some sense one can view this balance as a trade-off between building the
model or algorithm based on prior knowledge (inductive bias) and relying on
huge amounts of data to arrive at similar final outcomes.

Equivariant neural networks

Equivariant neural networks are a subfield of geometric deep learning dealing
with the case where the output of the model transforms “predictably” when the
input transforms. An example of this is a network that operates on images and
predicts which direction in the image is “up”; see fig. 2.7b for a visualisation.
In that case, if the input image is rotated, then the direction the model predicts
should rotate the same way. That is, it does not matter whether you apply
the rotation to the input image first and then the model, or apply the model
first, and then rotate the output: the two different methods agrees. This would
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Tree

N

N

Rot 90˝

(a) Example of an invariant network N
that predicts the class of the input.

N

N

Rot 90˝ Rot 90˝

(b) Example of an equivariant network N
that predicts the direction of the tree.

Figure 2.7: Visualising what equivariance and invariance means for a neural network
N . Compare this to fig. 2.6 where the part of a network that predicts the positions of
cells needs to be equivariant to translations and rotations, while the part that classifies
the type of cells needs to be invariant as the type of the cells are not changed by a
translation or rotation; obviously the per cell classification needs to move with the
cells.

be an equivariant model, and this property that the order of transforming the
data and applying the model does not matter is called equivariance.

A special example of equivariance is when the output of the model does not
change at all when the input is transformed, in that case the model is said to
be invariant, and this property is called invariance.

Models on curved spaces and sampling

Another area of where geometric deep learning is useful, without any symmetry
requirements, is when dealing with data on curved spaces. The go to example
is data living on the sphere, e.g. weather data.

When working with continuous data in machine learning settings one must
always perform some type of sampling. That is, decide on a set of discrete
points where one measures the values of the continuous field, as most models
take a finite set of numbers as input. Here we will only discuss two sampling
methods for data on the sphere: the Driscoll-Healy grid and the HEALPix grid.

Often, the go to sampling for data on the sphere is to sample on the Driscoll-
Healy grid [37], which is essentially a grid consisting of points as constant
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Figure 2.8: The Driscoll-Healy grid [37], viewed in angular space (left) and on the
sphere (right). Each dot is a sample point. Note that when viewed in a latitude-
longitude format, the sample points are equally distributed in a rectangular patter,
while due to the curvature of the sphere the samples points are denser in the polar
regions.

latitude and longitude. See fig. 2.8 for a visualisation. This grid is very easy to
implement and work with, as the sample points look like a regular rectangular
grid when plotted on a latitude-longitude grid (left). It however has a severe
disadvantage as, due to the curvature of the sphere, the sample points are dense
close to the poles while being sparse around the equator; compare fig. 2.9a
and fig. 2.9b. Hence, there is a trade off in the density of the sample points:
A reasonable density of samples for the polar region results in sparse sampling
around the equator, and the converse that a reasonable sample density at the
equator results in the poles being oversampled relative to the equator.

This is a downside as, for example, spherical images in latitude-longitude for-
mat appear stretched at the poles, and this could lead to that a model might
overemphasize polar regions if not handled carefully. See fig. 2.10 for a visual-
isation of this distortion close to the poles.

An alternative for sampling spherical data is the HEALPix grid [55], visualised
in fig. 2.11, where each sample point covers the same area on the sphere (right).
This means that there is no implicit bias in the different areas of the sphere as
the density of sample points is uniform. However, as a consequence, it cannot be
visualised as a rectangular grid (left panel of fig. 2.11) which means that most
models needs to be adapted to work for data sampled on the HEALPix grid.
Selecting a good sampling method, or otherwise dealing with the curvature of
the space, for your pipeline is part of the larger geometrical deep learning field.
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(a) Driscoll-Healy pole view (b) Driscoll-Healy equator view

Figure 2.9: Comparison of sampling points in the polar region and around the
equator in the Driscoll-Healy grid.

Figure 2.10: Due to the non-equal area in the sampling in the Dricoll-Healy grid
we get the distortions visible at the top and bottom of this omnidirectional image.
Image from the Stanford 2D3D-S dataset [5].
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Figure 2.11: Visualisation of the HEALPix grid [55] made using healpy [169]. Note
that the sample points are equally spaced out on the sphere (right). As a consequence,
when viewed in a latitude-longitude format the sample points do not form a nice grid
structure.
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2.3 Impact on society by AI and ML

This section concerns the impact of AI and machine learning on society as a
whole. I do not think that any of the work in Paper I-Paper IV will have
any large societal impact or any ethical consequences. With that said, I think
it is always important to be aware of the larger picture, and hence I chose to
include this section in my thesis.

Not everything regarding machine learning and AI are good, and there is a
lot to be written on both the benefits and drawbacks than I can provide here.
The impact of AI on society is not my field of study, but however, for those
reading this as their high level introduction to machine learning and AI I would
be amiss without mentioning some of its impacts on society. Furthermore, I
want to heavily emphasise that this is by no means an exhaustive coverage, nor
curated by or ordered by any kind of metric.

The main sources for this section is the report Energy and AI from 2025 by
the International Energy Agency (IEA) [66] and the report Assessing Potential
Future Artificial Intelligence Risks, Benefits and Policy Imperatives from 2024
by the Organisation for Economic Co-operation and Development (OECD)
[111]. The interested reader is referred to these reports for a more thorough
breakdown.

Benefits

Here follows short texts on some areas where AI models are likely to be bene-
ficial to society.

Accelerating science AI has a huge potential of accelerating science from
finding relations in data — which, among other things, helped mathematicians
prove new theorems in knot theory [33] and helped discovering a faster algo-
rithm for matrix multiplication [41] — to generating new proteins in biomedicine
— which has accelerated the mapping of proteins by a factor of approximately
45 000 [66, p. 17] — which fills a critical role in the design of new drugs.

Recently, more advances was made by DeepMind with AlphaEvolve where they
find new efficiency gains in mathematical and coding algorithms [109].

Education AI, and large language models in particular, has a great possi-
bility of enhancing education. Both in helping designing lesson plans [25] and
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offloading other administrative tasks [23], to being a personalised additional
mentor for both teachers and students [152]. Further, in areas with fewer
schools LLMs could by acting as a digital teacher help offload teachers with
too many students to give each proper attention. Of course, this final point
relies on that the students are actively using LLMs in good faith, i.e., properly
reflecting on the output with a critical eye, otherwise this could have adverse
effects of over reliance on the AI models.

A study [50] found using a survey a statistically significant negative correlation
between self reported use of AI models and the respondents self estimated skills
in critical thinking. Additionally, a different study [148] found the respondents
worried of negative effects on critical thinking from over reliance on AI models.

In order to avoid these negative potential effects the education systems should
be restructured so that students and teachers have a healthy relation to these
models. Several reports have been made on this [31, 104, 103, 152].

Healthcare AI can greatly assist in healthcare by, for example, offloading
doctors in administrative work and help in finding symptoms underlying a di-
agnosis in images or other data [146, p. 9]. Additionally, it can help patients
with keeping track of biometrics, with automatic warnings if values, or a com-
bination thereof, lies outside the ordinary for the individual. It can also aid
in making medicine more available to remote locations by self consultation or
automatic screening for symptoms [146, p. 11]. A study tested GPT-4 in a
healthcare setting and found that doctors with GPT assisting them in making
a diagnosis fared only slightly better than doctors with conventional diagnostic
resources. However, the LLM alone did better than both the previous groups
[52]. A different study also found that GPT-4 outperformed physicians [64].
This indicates that there is more to be gained through better integration of
LLMs in diagnostic reasoning.

Even though AI models can be hugely helpful in healthcare applications as it is,
at least partly, one important part that needs further development is explain-
ability or interpretability [130]. A model is called explainable, or interpretable,
if the output of the model can be explained from the input in “a human un-
derstandable way” [131]. For example, if a model sets a diagnosis, a human
could probe an explainable model to see what made it come to the diagnosis
or decision it did.

This is important as this shows how well the models can be trusted, and in
addition, this allows for human doctors to more easily learn from the models if
they have learnt a pattern of symptoms not known to humans.
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An additional challenge in healthcare application is that positive data, that
is data for some condition, is often scarce. Hence it is difficult to get a well
balanced training set, which needs to be compensated by other techniques, to
make sure that the model are not making too many errors, either false positives
— where the model states that a patient has a condition when they do not —
or false negatives — where the model states that a patient does not have a
condition when they do. To achieve zero errors is never feasible, so often one
needs to decide which of false positives and false negatives are worse, and work
to minimise those.

Assisting in decision making and optimising By the fact that AI models
can sift through huge amount of data and finding relevant trends or correla-
tions, that a human would have difficulties in observing, AI models can greatly
improve planning and decision making [111, p. 14 & 16]. This enters at all
levels, e.g. from helping at a personal level to optimising companies, energy
consumption, and grid management [111, p. 18]. The IEA estimates that if ex-
isting AI applications gained enough adoption throughout industry this could
“lead to energy savings equivalent to more than the total energy consumption
of Mexico today” [66, p. 16].

On a separate note, recent advancement has resulted in a weather prediction
model that can, at times, outperform our current best model for a fraction
of the compute power, at least after training, making predictions more energy
efficient and accurate [82].

Challenges and drawbacks

Here follows texts on some of the challenges and potential drawbacks of AI
models. Note that none of the ones listed here are unavoidable but are areas
which require work to improve the overall impact of AI.

Environmental impacts There is no denying that the rapid development
for, and running of, machine learning and AI models puts requirements on
the energy grid. Currently, a large AI-focussed data centre annually consumes
electricity corresponding to around 100 000 households [66, p. 38] and the
energy consumption of data centres are set to more than double by 2030 [66, p.
14]. One major drawback is that this energy consumption is very geographically
focussed, meaning that local infrastructure needs to deal with this increased
demand. Furthermore, the IEA estimates that the emissions from data centres
will make up around 1.5% of the total energy sector emissions up to 2035 and
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emissions related to data centres are one of the fastest growing emission source.
With that said, IEA estimate that application of AI could result in efficiency
gains causing a reduction of around equivalent to around 5% of energy-related
emissions by 2035 [66, p. 18].

Outside of energy consumption, the dependency on critical minerals for data
centres will increase, and sources of these are often geographically concentrated
with China being the singularly largest source [66, p. 213-214]. This gives
large amounts of control to specific countries. For example, due to China’s
export restrictions on gallium the price of gallium doubled between mid 2023
and end of 2024 [66, p. 214]. However, AI methods can also be used for
optimising exploration and extraction of critical minerals reducing the societal
and environmental impact of such activities [66, p. 120].

Another environmental impact of large scale computing in the modern day
is the water usage. A study estimates that if OpenAI’s model GPT-3 was
trained on Microsoft’s U.S. data centre would consume around 700 000 litres
of available fresh water, not including any inference water usage [88].

Data collection, selection, bias, and privacy As mentioned previously,
the modern usage of machine learning is extremely data hungry [93] but un-
fortunately acquiring high quality data is expensive [8]. For labelled data one
needs to get labels for each data point, and this can be done in two ways: either
one trains a model on a smaller set of labelled data, or use another algorithm,
and use this to predict labels for the rest of the data [158, 26], this result is
an example of semi-supervised learning; or one pays people to manually label
each data point which takes a lot of time. Additionally it is well documented in
the case of medical data that the opinions of experts can differ markedly [135,
147]. This means that in order to have high quality data with reliable labels
one needs to consult multiple experts which drives up the cost of the dataset.

As mentioned previously, using the reinforcement learning paradigm, where
the model learns itself through some interaction with either an environment or
itself, allows for less, or even zero, human data. Using other training methods
the models are generally limited to the distribution of the training data, which
is often either generated or curated by humans, but using RL allows the model
to transcend these limits and find new approaches humans have not thought
about.

This was observed as the Go-playing model AlphaGo Zero [141] learnt Go only
through self play, and was, at the time, significantly stronger than all humans
and other AI models. Recently, a paper was uploaded to ArXiv, a site for
scientists to share research in a wide variety of fields, presenting a learning
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scheme for LLMs to learn mathematics and coding through RL by self propos-
ing relevant problems and then solving them [167]. Silver and Sutton from
DeepMind in their recent position paper “Welcome to the Era of Experience”
[142] presented the position that future strong AI models will learn mostly
through interaction with an environment and hence generating their own data.

As machine learning models are good at finding patterns and trends in data
this puts heavy emphasis on that the data used to train the model does not
contain any unwanted patterns the model can use as a proxy. A paper dis-
cussing explainability [123] showed an example of this by knowingly training a
bad network to classify huskies and wolves and selected all pictures containing
wolves to have snow. Due to this the network classified pictures of huskies over
snow, or generally a light background, as wolves. Examination showed that the
network really detected presence of snow and used that as an easier proxy for
the task than actually using the animal in the picture.

That example is rather benign, but several other, more severe mistakes due
to data, and how one collects data, exists. A machine learning model used
in the USA to predict the health risk of individuals was found to be racially
biased without having any features in the training data related to this. The
cause of this is that they used health care costs as a proxy for health and
African American patients tended to pay more than white patients for similar
treatments and hence they were thought to be healthier, due to having spent
more on healthcare. Another severe example is the COMPAS model which
was used in the USA for predicting recidivism, i.e. the likelihood of a person
repeating an offence. A study [4], their data analysis is available on github [119],
found that COMPAS assigned higher risk of recidivism to African American
defendants than was observed, while under estimating the recidivism rate for
white defendants. Another group found that the COMPAS models fails certain
group fairness metrics [58], while another study found that the COMPAS model
is no more accurate than then people with no experience in criminal justice and
a simple model with just two input features — as compared to COMPASs’ 137
input features — is essentially equivalent. All this although the training data
for COMPAS involved no racial features.

This behaviour stems from that machine learning models finds trends and pat-
tern in used data, wherever that pattern comes from and independently of the
source of the pattern. Hence if the existing data, e.g. prison recidivism, is
skewed, knowingly or not, from collection there is a high risk that the model
will itself perpetrate this bias. From this it is clear that machine learning
models are likely to fall prey for confusing correlation and causation. E.g. if
one trains a model to predict the risk of lung cancer and the training dataset
contains the health information that patients have bad teeth the model might
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use having bad teeth as a large sign of lung cancer, although both can stem
from an underlying source, e.g. smoking. Thus one must be very clear on if the
data is skewed from collection and what patters and biases exist in the training
data. Unfortunately, it is not always easy to detect if the underlying training
data has a bias or not so one must always be aware of the possibility.

When it comes to collecting the huge amounts of data needed for current day
LLMs and foundational models some companies resort to scraping data from
the internet without much consideration of the source [9, 38]. This results
in issues regarding intellectual properties [112] and privacy [110]. There are
studies showing that, in certain circumstances, it is possible to reverse engineer
the data a model has been trained on [60, 21, 22, 107], further exacerbating
the importance of keeping track of the training data.

Furthermore, as AI models allows for processing huge amounts of data without
supervision, this allows for autonomous surveillance of public spaces. Many
countries already use AI models for this purpose and with growing software, as
well as hardware, capabilities this will probably increase [111, p. 24].

Trust, hallucinations, and misinformation Anyone who has used a large
language model, such as ChatGPT, has encountered hallucinations which are
statements the model claims are true but, in fact, are not. This means that one
cannot use the output of a LLM without double checking all the statements.
If not read with this in mind it is easy to accidentally fall for, or spread, mis-
information. Unfortunately, this becomes an issue as many people has shifted
to using LLMs instead of a conventional search engine. An Adobe survey of
1000 people in the U.S. found that around 77% have used LLMs — specifically
ChatGPT — as search engines, and around 24% of respondents used LLMs first
before conventional search engines [39]. Additionally, around 30% trusted the
response from ChatGPT more than the ones from conventional search engines.

These hallucinations occur due to that the models are generally trained at
predicting the next, or a missing, token and then getting human feedback on
whether the output is a “good response”. No part in training chain actually
requires that the statements made are true, but rather emphasises that the
responses are acceptable to the human giving feedback.

Additionally, generative models can be used to generate text or images ex-
plicitly intended to spread misinformation, such as fabricated news stories, or
reports and papers [111, p. 20 & 21]. As the models gets better, it will be
even more difficult to separate the actual information from one generated by
AI. Moreover, just the presence of deep fakes or fake news can, and already
has [27], be used to discredit real and factual news. A study in California Law
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Review in 2019 called this the Liar’s Dividend [27] as this can be used to avoid
accountability by claiming that any evidence is generated by AI models. More
research needs to really know the impact of this, additionally society at large
needs to raise peoples AI-litteracy and make everyone aware of the potential
for misuse — both intentional and unintentional.

Inequalities and consolidation of resources The general market for LLMs
are already small with some of the main providers being OpenAI (the Chat-
GPT models), Google (the Gemini models), Anthropic (the Claude models),
xAI (the Grok models), and DeepSeek (the DeepSeek models). Additionally, a
lot of these companies use user input, and other interactions with their mod-
els, to obtain more training data and thus further improve their models. This,
combined with the fact that it requires significant resources to train a competi-
tive model from the ground up [98, p. 62] sets the stage for these companies to
maintain their position by, for example, buying all start-ups that seem compet-
itive. Hence this could result in a consolidation of resources to these companies
[111, p. 22].

In addition to this, countries with successful AI companies are likely to get a
large advantage over countries lacking these tools leading to inequalities and
consolidation of power between countries [111, p. 25].

Making these models open source would reduce this risk but would increase
the risk of other entities modifying the models for nefarious use cases, so it is
not clear cut how to reduce this centralisation of power without exposing other
risks.

Alignment and agentic AI One goal people often cite is to, at some point,
obtain so called agentic AI . This is a fuzzy, speculative, field and many people
have strong opinions making it divisive [111, p. 19, 34, &42]. Roughly, agentic
AI means an algorithm that can make decisions, planning, and work towards a
goal without further — or with minimal — further human instruction or guid-
ance. These could be either fully digital or connected to robots for interaction
with the physical world. This would be very helpful in many cases, from home
assistance robots and autonomous robots working at disaster scenes to fully
functioning AI assistants checking in with the human on what administrative
tasks they can assist with. Obviously this range includes putting agentic AI
into offensive scenarios, from digital and physical attacks to subterfuge and
espionage.

Any use of agentic AI requires research and development of alignment methods,
see [68] and [111, p. 34] for general discussions. An AI model is considered
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aligned if it works towards the intended goals without deviating to unintended,
either instrumental or terminal, goals. Along these lines, researchers has ob-
served deceitful behaviour in the chain of thought of certain models [59, 102,
56], and OpenAI have detected instances of models modifying tasks and code
to fool the evaluation and get an easier task [11]. The exact cause of these
events is not known, e.g. if — or to what extent — they occur due to texts
about this being present in the training data or due to other causes. In any
case, developing AI, both agentic and not, too hastily could result in negative
consequences and care should be taken to avoid this [111, p. 21]. This a field
of research that requires more attention.
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Part II

Mathematical foundations
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3 Mathematical background

In this chapter I will present the needed mathematical background to read
Paper I and Paper IV. Readers with very familiar with group and represen-
tation theory as well as differential geometry can skip this chapter and revisit
it later if needed.

3.1 Group and representation theory

For more details on group and representation theory see [127, 72, 67].

The study of symmetry in mathematics is encompassed in the field of group
theory where the main subject is the group.
Definition 3.1.1 (Group). A group is a pair (G,d) where G is a set and
d : GˆG Ñ G is a map such that

1. there exists an element e P G for which ed g = gd e = g for all elements
g P G;

2. for all elements g P G there exists an element denoted g´1 such that
g d g´1 = g´1 d g = e; and

3. for all elements g, k, h P G it holds that g d (k d h) = (g d k) d h.

If the map d is symmetric, that is gdk = kdg for all elements g, k P G then the
group is called abelian. An operation with this property is called commutative.
Generally one drops the d and simply writes gk := g d k.

If two sets G and H are such that H is a subset of G, and both are groups with
the same group operation, then H is called a subgroup of G and this is denoted
H ď G.

47
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Example 3.1.3: The group GL(n,R)

One clear example of a group is the set of nˆn invertible real matrices
with the standard matrix product as the group product. This group
is typically denotes GL(n,R), but if the real part is understood from
context one generally just writes GL(n).

Remark 3.1.2. There is a special type of group called a Lie group, see defini-
tion 3.2.4. In this thesis, unless otherwise stated all groups are assumed to be
Lie groups.

Letting groups acting on objects and spaces is a powerful notion.

Definition 3.1.4 (Group action on a space). Given a group G and a space X
the left (right) action of G on X is a map Ź : G ˆ X Ñ X (or for a right
action Ÿ : X ˆG Ñ X) satisfying that

1. for all elements x P X it holds that eŹx = x;

2. for all elements g, k P G and x P X it holds gŹ (kŹx) = (gk)Źx;

and the corresponding properties for the right action. The space X with a left
(right) G-action is called a (left) G-space X. When the action is obvious I drop
the explicit Ź and just write gx for g P G and x P X.

With the action of a group G on a space X this allows the fundamental con-
cept of an G-orbit of a point x P X. The G-orbit of x is the set of points
tgŹx | g P Gu, that is, all the points x can be moved to by elements of G.

A more abstract object that will be useful later for (bi)principal bundles it the
torsor.

Definition 3.1.5 (Torsor). Given a group H, a left (right) H-space X is a left
(right) torsor if the action of H on X satisfies that

1. H acts freely: for each h P H it holds that @z P X, hŹx = x implies
that h = e.

2. H acts transitively: @x, y P X there exists h P H such that y = hŹx.

A right torsor H-torsor is defined identically, but with a right action.
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Example 3.1.6: Symmetry as a group

The set of transformations leaving an equilateral triangle, see fig. 3.1
below, the same are rotations by 120˝ and reflections about the sym-
metry lines. To be explicit, if we label the corners as x, y, and z, a
rotation of 120˝ maps the corners x ÞÑ y ÞÑ z ÞÑ x while a 240˝ maps
x ÞÑ z ÞÑ y ÞÑ x. Hence, if we do not label the corners we see that
the triangle is left the same after rotating by 0˝, 120˝ or 240˝. Due to
this, any combination of these rotations will also leave the triangle the
same. As for the reflections, if we reflect the triangle around lx we see
that x ÞÑ x, y ÞÑ z, and z ÞÑ y. If we again drop the labels the tri-
angle is the same after the reflection. Similar things hold for reflecting
about ly and lz. Hence, setting G as the set t0˝, 120˝, 240˝, lx, ly, lzu

and defining g d k := g ˝ k as doing transformation k first and then g
then one can see that this will result in a transformation in G. Or ex-
pressed differently, the composition of two symmetry preserving actions
is a symmetry preserving action.

x y

z

lxly

lz

Figure 3.1: Figure displaying symmetry of triangle.

The symmetry of an object is generally described as a group. In that case the
set G is the set of transformations keeping the object the same and the map
d : GˆG Ñ G is the composition of these transformations.

The above example deals with a group, the set of symmetry transformations,
acting on an object, the triangle.

There are two important special cases of G-spaces: homogeneous spaces, see def-
inition 3.1.7 and example 3.1.11, and G-actions on vector spaces through a
representation, see definition 3.1.9 and example 3.1.12.

Definition 3.1.7 (Homogeneous space). A G-space X is called homogeneous
if for all x, y P X there exists a g P G such that y = gx. That is, the group G
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acts transitively on X.

Remark 3.1.8. Using the orbit nomenclature, if X is a homogeneous G space
this means that the G-orbit of any point x P X is the entire space X. In words
this means that one can get to any point from any point using the group action.

For examples of homogeneous spaces, see example 3.1.11.

The other interesting special case of a G-space is when the underlying space is
a vector space. In that case the group G acts on the vector space X through a
representation.

Definition 3.1.9 (Representation). A representation of a group G is a pair
(ρV , Vρ) of a vector space Vρ and a map ρV : G Ñ Aut(Vρ), where Aut(Vρ)
is the set of linear invertible maps Vρ Ñ Vρ. The map ρV needs to be a
homomorphism, that is

ρV (gk) = ρV (g) ˝ ρV (k), @g, k P G. (3.1)

If the map or the space is obvious from context either can be referred to as a
representation where the other element is implicit. Additionally, if there is no
risk of confusion I will drop the subscripts of either the map, the vector space,
or both.

To see some examples of representations, see example 3.1.12.

Remark 3.1.10. In the case that the vector space is finite dimensional V – Rn
then Aut(V ) is isomorphic to GL(n), that is, the space of invertible n ˆ n
matrices. Hence any group element g can, in this context, be represented as
an invertible nˆn matrix ρ(g) when acting on vectors in V . To ease notation,
I will denote the action of g on v as ρ(g)v instead of ρ(g)(v).

Note that any given group can act on different spaces, and even with a specific
group and space there are multiple different representations specifying exactly
how the group acts. In example 3.1.12 I provide some examples of different
representations of groups.

The interesting part of this definition is that the map ρ needs to be a homomor-
phism. For a given vector space V this restricts the possible representations
and, additionally, it opens the possibility to study special subspaces, so called
invariant subspaces. Intuitively, a subspace is invariant if any vector in the
subspace stays in the subspace when acted on by G.
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Example 3.1.11: Some examples of homogeneous spaces

Here are some examples of homogeneous spaces which will come into
play later in this thesis.

• The plane: The plane R2 is a homogeneous space under the group
of two-dimensional translations. Specifically, a translation z P R2

acts on x P R2 by zŹx = x+ z. Hence, if x, y P R2 then we know
that there exists some translation z such that y = x+ z = zŹx.

• The sphere: The (two-dimensional) sphere S2 is a homogeneous
space under the group SO(3) which is the group of three dimen-
sional rotations. This group acts on points on the sphere by ro-
tating while keeping the distance to the origin the same.

• The space G/H: This is the general form of a homogeneous space,
and any homogeneous space can be viewed through this lens. If G
is a group and H Ă G is a subgroup then the coset space G/H is
a homogeneous space under the group G. The coset space is the
space of all points of the form [g] := gH = tgh | h P Hu on which
G acts as k[g] = [kg]. The [g] notation is the equivalence class of
g in that two group elements g, g1 are considered the same if they
are related by the (right) action of some h P H. That is, gh = g1

for some h P H.

RS2

x

yz

R2

gH

[g]

[pg]
g

G/H

Figure 3.2: Left panel: Visualisation of the sphere with a rotation R P SO(3)
linking two points. Middle panel: Visualisation of the plane with a translation
z P R2 linking two points. Right panel: Visualisation of the homogeneous
space G/H and a group element linking two points, as well as the coset
[g] = gH. Note that G/H is generally not flat, it is only shown as flat here
for convenience.
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Example 3.1.12: Some examples of representations

A representation of planar rotations: When the group of planar rota-
tions act on the space of planar vectors V = R2 a rotation by an angle
θ is generally mapped to the matrix

ρ(θ) =

(
cos(θ) ´ sin(θ)
sin(θ) cos(θ)

)
. (3.2)

The trivial representation: If V is any vector space and G is any group
the trivial representation ρ : G Ñ Aut(V ) is defined as

ρ(g)(v) = v. (3.3)

That is, this representation leaves all vectors unchanged.

Regular representation: If we have a vector space V of functions f :
X Ñ Y where X is a left G-space then the left regular representation
of G allows G to act on functions through

[ρL(g)(f)](x) = f(g´1 Źx). (3.4)

In the case that X is a right G-space the corresponding right regular
representation is

[ρR(g)(f)](x) = f(xŸ g). (3.5)

Since the left regular representation is very ubiquitous I will often just
denote it [gf ], or possibly [gŹ f ], instead of [ρL(g)f ].

x

y

v

ρ(g)v g

x

y

vg f

z

[zŹ f ]

Figure 3.3: Left panel: the group of planar rotations acting on a planar
vector through the representation in eq. (3.2). Middle panel: the same group
of planar rotations, or any other group, acting on a planar vector through
the trivial representation. Right panel: the group of translations on the plane
acting on a function f : R2 Ñ R3, that assigns an RGB-value to each point,
through the left regular representation [z Ź f ](x) = f(x ´ z).
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Definition 3.1.13 (Invariant subspace). Given a G-representation (ρ, V ) a
subspace W Ă V is called an invariant subspace if

ρ(g)w P W @w P W, g P G. (3.6)

All representations have two trivial invariant subspaces: the set containing the
origin t0u and the entire vector space V . This begs the natural question: for a
given representation, how many non-trivial invariant subspaces are there and
what are they? Representations with no non-trivial subspaces are special and
are called irreducible.

Definition 3.1.14 (Irreducible and reducible representations). A representa-
tion V is irreducible, often called an irrep, if the only invariant subspaces are
t0u and V , else it is called reducible.

For an example of a decomposition of a representation into irreps, see exam-
ple 3.1.19.

As was mentioned in example 3.1.12 groups can act on functions. There is a
way to construct a function space from a group action on a vector space.

Definition 3.1.15 (Induced representation). Given a subgroupH to a groupG
and a H-representation (ρ, V ). Then the induced representation is the function
space

IndGH ρ :=
␣

f : G Ñ V | f(gh) = ρ(h´1)f(g), @h P H, g P G
(

, (3.7)

equipped with the left regular G-representation

[gf ](k) = f(g´1k). (3.8)

For brevity, if the spaces are clear from context, we will denote IndGH ρ by Iρ.

Remark 3.1.16. The constraint f(gh) = ρ(h´1)f(g) introduced in eq. (3.7)
is called the Mackey constraint or Mackey condition.

This construction will be relevant later as this is how we will treat our data
mathematically.

Another definition that will be relevant is the definition equivariance.

Definition 3.1.17 (Equivariance). Given two G-spaces X and Y with actions
ŹX and ŹY respectively. Then a map T : X Ñ Y is equivariant if for all
x P X and g P G

T (gŹX x) = gŹY T (x). (3.9)
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Remark 3.1.18. A special case of an equivariant map is when the domain
and codomain are representations, so that gŹX x = ρX(g)x and similarly for
Y , and T is linear. In that case T is called an intertwiner.

Example 3.1.19: Example of irrep

To see a representations decomposed into irreps let (ρ,R3) be the repre-
sentation of planar rotations on three-dimensional vectors by rotations
around the z-axis. Here there are two invariant subspaces: the xy-plane
and the z-axis. The plane is invariant as the rotations keeps all vectors
in plane, and the z-axis is invariant as no vectors on the z-axis are af-
fected by the rotation, see fig. 3.4. Specifically, this representation is
given by the map

θ ÞÑ ρ(θ) =

cos(θ) ´ sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (3.10)

This allow us to decompose the representation (ρ,R3) into

ρ = ρR2 ‘ idR, R3 = R2 ‘ R, (3.11)

where ρR2 acts on the xy-parts of vectors by the standard rotation
matrix and idR acts on the z-component and leaving it as it is.

vxy
ρ(g)vxy

vz = ρ(g)vz

v
ρ(g)v

g

Figure 3.4: Planar rotations acting on vectors in R3 leaving the xy-plane
and the z-axis invariant. Note that a vector v that lies outside either the
xy-plane or the z-axis is not mapped back into the same non-trivial subspace.
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3.2 Differential geometry and gauge theory

For more details on differential geometry, fibre bundles, and gauge theory see
[61, 86, 145, 74, 73, 122].

Another relevant field is differential geometry which deals with calculus on,
potentially, curved spaces. This formalism is what will allow us to talk about
data on curved spaces.

The central object in differential geometry is the manifold which will be the
spaces our data is defined on.
Definition 3.2.1 (Manifold). An n-dimensional manifold is a space M such
that for each point x P M there exists an open neighbourhood U of x which is
homeomorphic to an open subset pU of Rn.
Remark 3.2.2. There are more technical assumptions on a manifold: it is
assumed to be Hausdorff and second countable.

The intuition for a n-dimensional manifold is that it is an object that “locally
looks like” Rn. For an open set U Ă M which is mapped homeomorphically to
φU (U) Ă Rn the pair (U,φU ) is called a coordinate chart. As multiple charts
can cover the same area on the manifold we need to know how these overlapping
charts relate to each other.

Let (UA, φA) and (UB , φB) be two coordinate charts such that UAXUB ‰ H,
then the transition map is the map φA˝φ´1

B : φB(UAXUB) Ñ φA(UAXUB).
Explicitly, going through each step:

Rn Ą φB(UA X UB)
φ´1

B
ÝÑ UA X UB

φA
ÝÑ φA(UA X UB) Ă Rn. (3.12)

That is, φA ˝ φ´1
B changes the coordinates of the overlapping area UA X UB

from the coordinates (given by) φB to the coordinates (given by) φA. Note
that the transition map φAB := φA ˝ φ´1

B is a map from (an open subset of)
Rn to (an open subset of) Rn, this means that one can view φA ˝ φ´1

B as a
standard multi variable function.

Now we want to be able to assign local coordinates in a way that we can
cover M such that every point has, at least one, coordinate chart including
that point. Any such collection of coordinate charts A = t(Ua, φa)uaPI , where
I is an index set, such that

Ť

aPI Ua = M is called an atlas. If all transition
functions φab := φa˝φ´1

b are smooth, as functions Rn to Rn, then the manifold
M is a smooth manifold. For an example of the circle as both a smooth and
non-smooth manifold, see example 3.2.6.
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xA

yA

xB

yBM

pUA UB

φA φB

φA(UA)

φA(p)

φB(UB)

φB(p)

φBA := φB ˝ φ´1
A

Figure 3.5: Visualisation of two coordinate charts (UA, φA) and (UB , φB) and a
transition map showing the change of local coordinates in an open set around p P

U Ă UA X UB Ă M.

Smooth manifolds allow us to formalise the concepts of tangent vectors. Namely,
let p P U Ă M be a point on the manifold such that (U,φU ) be a local chart
and let γ : I Ñ M — where I Ă R is an open set containing 0 — be a smooth
curve in M such that γ(0) = p. This means that the composition φU ˝ γ is
a map from R to Rn and the derivative (φU ˝ γ)1(0) is a vector in Rn. Now,
there are many curves that result in the same vector, hence we group all curves
generating the same vector at p into equivalence classes [γ]p. Specifically, if γ1
and γ2 are two curves passing through p at t = 0 we let

γ1 „ γ2 iff (φU ˝ γ1)
1(0) = (φU ˝ γ2)

1(0). (3.13)

With this we get a one-to-one mapping between vectors Xp and equivalence
classes of curves [γ]p. Each equivalence class at p is then a tangent vector to
M at p.

Using this structure one tend to define an action of tangent vectors on smooth
functions f : M Ñ V as

(Xp)(f) =
d

dt
(f ˝ γ)(t)

ˇ

ˇ

ˇ

ˇ

t=0

, (3.14)

where γ is any curve from the equivalence class of Xp.

Additionally, an important concept for smooth manifolds are diffeomorphisms.
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A diffeomorphism F : M Ñ N is an invertible smooth map between two
smooth manifolds M and N such that the inverse is smooth as well. The set of
diffeomorphisms from a manifold M to itself form a group under composition
denoted Diff(M).

Not only points can be moved by diffeomorphisms, but tangent vectors can be
pushed forward and functions can be pulled back.

Definition 3.2.3 (Pushforward and pullback). Let F : M Ñ N be a diffeo-
morphism between two smooth manifolds.

The differential of F , denoted dF is a map dF : TM Ñ TN between the
tangent bundles of M and N . The pushforward of Xp P TpM by F is denoted
(dF )p(Xp) and acts on a smooth function fN : N Ñ V through

(dF )p(Xp)(fN ) =
d

dt
(fN ˝ F ˝ γ)(t)

ˇ

ˇ

ˇ

ˇ

t=0

. (3.15)

The pullback of a function fN : N Ñ V by F , denoted F˚f is a map F˚f :
M Ñ V defined as

(F˚f)(p) = (f ˝ F )(p). (3.16)

A very special smooth manifold is the Lie group which is used to describe
essentially all continuous, or smooth, transformations.

Definition 3.2.4 (Lie group). A Lie group G is a group which is also a smooth
manifold such that the group multiplication

m : GˆG Ñ G, m(k, g) = kg, (3.17)

and the inverse
ι : G Ñ G, ι(g) = g´1, (3.18)

are smooth maps for all k, g P G.

Example 3.2.5: Example of Lie groups

A simple example of a Lie group is the group of planar rotations, or the
group of translations of the plane.

As a Lie group G is a smooth manifold it makes sense to consider tangent
vectors and tangent spaces. Specifically, we can identify the tangent space
TeG with the so-called Lie algebra g.The Lie algebra g is a vector space and
can intuitively be thought of as encoding the structure of the group G where
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the tangent vectors X P g correspond to infinitesimal transformations. To
obtain the tangent space at an other g P G note that Lg := m(g, ‚) : G Ñ G
is a diffeomorphism and hence we can get TgG at any g P G through the
pushforward of TeG. Specifically

TgG = (dLg)e(TeG) = (dLg)(g), (3.19)

as we can identify g with TeG. One important point is that there exists a map
exp : g Ñ G which intuitively integrates an infinitesimal transformation X to
obtain a finite transformation g P G. This will be important when we discuss
connections.

In order to discuss data on manifolds we also need the concepts of a fibre bundle.
Intuitively, a fibre bundle is a construction that allows to attach a copy of a
certain space to each point of another space.

Definition 3.2.7 (Fibre bundle). A fibre bundle is a tuple (E, π,M, F ) where
E is the total space, M is the base space — often taken to be a smooth manifold
— the map π : E Ñ M is a continuous surjective map called the projection,
and F is a space called the typical fibre. The tuple needs to satisfy that for
all x P M we have π´1(txu) =: Fx – F and that it is locally trivial. Locally
trivial means: for all open set U in the atlas of M there exists a diffeomorphism
ϕ : π´1(U) Ñ U ˆ F satisfying that π1 ˝ ϕ = π. Graphically this means that
the following diagram commutes

π´1(U) U ˆ F

U

ϕ

π
π1

This is visualised in fig. 3.7. Often a bundle is denoted simply by the total
space E if the other components are obvious from context, or as π : E Ñ M.
If needed, the typical fibre is sometimes denoted as a subscript to the total
space: EF .

Intuitively, one can view ϕ as assigning coordinates to the fibre bundle locally,
and as a manifold locally looks like Rn a fibre bundle locally looks like UˆF –
pUˆF where pU is a subset of Rn. Hence, in the case that F is a finite dimensional
vector space we can through a local trivialisation ϕ assign coordinates ϕ(p) =
(xi, yα). Here xi, i = 1, . . . , n are coordinates in the base space, and yα,
α = 1, . . . , dim(F ), are coordinates in the fibre. The direction along the fibre is
called the vertical direction and all other directions are called horizontal. This
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Example 3.2.6: Smooth and non-smooth manifold

The smoothness of a manifold is entirely dependent on the compatibility
of the atlas of coordinate charts. To illustrate this let our manifold M
be the circle S1 and lets equip this with two different atlases, first a
smooth atlas and then a non-smooth atlas.
Smooth atlas: Define the four charts below all mapping the open set
(´1, 1) to the circle.

φ1 = project top half U1 onto the x axis
φ2 = project bottom half U2 onto the x axis
φ3 = project right half U3 onto the y axis
φ4 = project left half U4 onto the y axis

(3.20)

To check that this is a smooth atlas we need to check that wherever two
charts overlap, Ui X Uj ‰ H, the transition map φij = φi ˝ φ´1

j is a
smooth map from (´1, 1) Ă R to (´1, 1) Ă R. For example, U1 and U3

overlap in the first quadrant and through these maps we get that the
transition function from chart 1 to chart 3 is

φ31(x) =
a

1 ´ x2, (3.21)

which is a smooth function on (´1, 1).

x

y

U1

U2

U3

U4

x

y

x

y

φ´1
1

φ3

Figure 3.6: Visualisation of the four open sets U1, . . . , U4 on S1 used in the
charts defined in eq. (3.20).
Non-smooth atlas: If we want to make this into a non-smooth atlas we
can simply compose all of the charts φ1, . . . , φ4 with the non-smooth
map

h(t) =

#

t, t ă 0

2t, t ě 0.
(3.22)

This ensures that all charts φ1, . . . , φ4 are still invertible, now map-
ping into (´1, 2), and that their compositions φij = φi ˝ φ´1

j are non-
differentiable at 0.
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πM U

π´1(U)
U ˆ F

π1

ϕ

Figure 3.7: A fibre bundle π : E Ñ M with an open set U Ă M and a local
trivialisation of π´1(U).

is visualised in fig. 3.7. Note that the bundle is only locally trivial, meaning
that it locally looks like a simple product U ˆ F while globally having a more
complicated structure. A trivial bundle is a bundle where E = M ˆ F .

Remark 3.2.8. Technically, a local trivialisation ϕ : π´1(U) Ñ U ˆ F does
not assign any coordinates on either the manifold or the fibre. However, a chart
(U,φU ) of local coordinates on the manifold can be used to assign coordinates
to the manifold part of the local trivialisation. To achieve coordinates on the
fibre one must additionally choose a basis eα for the typical fibre. The full
chain to achieve coordinates on both the manifold and the fibre is then for a
point p P π´1(U) Ă E

p
ϕ

ÝÑ (x, y)
(φ,idF )

ÝÑ (xi, y)
(idRn ,eα)

ÝÑ (xi, yα). (3.23)

Although this is good to keep in mind it is sometimes easier to think of a
local trivialisation as assigning coordinates on the bundle and hence being the
analogue to the coordinate charts on a manifold.

Definition 3.2.9 (Types of bundles). The typical fibre used determines the
type of bundle here are some quick definitions:

• Vector bundle: A vector bundle is a fibre bundle (E, π,M, V ) where the
typical fibre is a vector space.

• Tangent vector bundle: The tangent vector bundle (TM, π,M,Rn) is a
bundle where the fibre at each point p is the tangent space TpM – Rn.

• Principal H-bundle: A principal H-bundle is a bundle (P, π,M,H) where
H is a Lie group and H acts freely and transitively on the fibre, typically
from the right. Note that this means that each fibre is isomorphic to the
group H but is not a group in itself, rather each fibre is a H-torsor.
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Example 3.2.11: Examples of bundles

• Vector bundle: A trivial example of a vector bundle is that R3

can be viewed as a vector bundle (R3, π,R,R2) where we attach a
copy of R2 to each point along the base space R.

• Tangent vector bundle: If the base manifold is S2, the sphere, then
each tangent space TpS2 would be the tangent plane to the sphere
at p. The tangent bundle TS2 is then the collection of all tangent
planes.

• Principal H-bundle: Let the base space be R3 and the fibre at each
point be a (right) GL(3)-torsor. This forms a (right) principal
GL(3)-bundle. Intuitively one can think of the fibre over a point
p as all possible coordinate frames for three-dimensional vectors
at p.

• Associated vector bundle: Let the principal bundle P be the bundle
just introduced and let V = R3 be the normal representation of
GL(3). Then each for each element [p, v] in the total space P ˆρV
one can view v as being the coordinates of the geometric vector,
or coordinate free vector, v in the basis p. The invariance to the
action of GL(3) enforced by the associated vector bundle then
means that the equivalence class [p, v] represents the geometric
vector itself.

• Associated (vector) bundle: Given a left H-space V and a principal H-
bundle P the associated bundle is constructed from the space P ˆ V
where one then identifies points under the H-action:

(p, v) „ (p1, v1) iff Dh P H : p = p1 Ÿh, v = h´1 Ź v1. (3.24)

This means that in each equivalence class we have [pŸh, v] = [p, hŹ v].
To denote that we have imposed this H-equivalence to the total space we
denote the total space by P ˆH V . In the case that V is a vector space
with a representation ρ, then we denote the total space by P ˆρ V and
the bundle is called a associated vector bundle.

Remark 3.2.10. Technically one can define a principal H-bundle for any
group — that is, H need not be a Lie group — but here we will assume that
all principal bundles use Lie groups.
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For any vector bundle a local trivialisation yields two sets of coordinates — one
set for the base space and one set for the fibre — and hence it is natural to think
about coordinate transformations on each set of coordinates. Coordinates in
the base space can be affected in two ways: actively or passively. An active
transformation on a manifold M is performed with a diffeomorphism ϕ : M Ñ

M actively moving points around on the manifold. Hence, assuming a chart
(Ua, φa) then a point x P Ua would have coordinates φa(x) P Rn and if x1 =
ϕ(x) P Ua then the moved point x1 would have coordinates φa(x1) in the same
choice of coordinates. A passive transformation on a manifold M is performed
through a change of coordinates

φb(x) = φba(φa(x)). (3.25)

Of course, one could have that φb(x) = φa(ϕ(x)) in which case it seems that
both processes resulted in the same outcome, same coordinates, but one ap-
proach is active and the other is passive.

Specifically, for the spatial coordinates in a local trivialisation we get the fol-
lowing. For a fibre bundle π : E Ñ M with typical fibre F with coordinates
φa on the subset Ua X Ub will have local coordinates

(φa, id) (ϕ(p)) =
(
xia, y

α
)
. (3.26)

Changing coordinates in the base manifold φba : φa Ñ φb will result in a
purely horizontal change in the bundle coordinates:

(xia, y
α)

(φba,id)
ÞÝÑ (φba(x

i
a), y

α) = (xib, y
α). (3.27)

Note that during this process, the point in the base manifold stays the same
— just with different coordinates — and the coordinates yα in the fibre are
unchanged. This is visualised in fig. 3.8.

Importantly, the above discussion assumes we have coordinates in the fibre,
this requires a choice of basis in the fibre. Let ω(x) be a choice of basis in the
fibre over x with the α:th basis vector denoted ωα(x). With this any vector
in that fibre can be expanded in coordinates yα through y = yαωα(x) (where
any index repeated as a super- and a subscript is summed as by the Einstein
summation convention). A change of coordinates in the fibre over x can be
represented by an invertible matrix A such that the new coordinates and basis
are

yα ÞÑ yβ = Aβαy
α

ωα(x) ÞÑ ωβ(x) = (A´1)αβωα(x),
(3.28)

where Aασ(A´1)σβ = δαβ and δαβ is 1 when α = β and 0 otherwise. Through



3.2. Differential geometry and gauge theory 63

{Ua X Ub ˆ F {Ua X Ub

(Ua X Ub) ˆ F π´1(Ua X Ub) Ua X Ub

{Ua X Ub ˆ F {Ua X Ub

π1

(φba,id)

φba

(φa,id)

(φb,id)

ϕ

φa

φb(φab,id)

π1

φab

Figure 3.8: Diagram visualisation of the change of base manifold coordinates.

this we see that the vector y is independent of the choice of coordinates:

y = yαωα(x)

= Aαβy
β(A´1)σαωσ(x) = (A´1)σαA

α
βy

βωσ(x) = δσβy
βωσ(x)

= yβωβ(x).

(3.29)

The above was an example of a local change of coordinates in the fibre and this
can be formalised through gauge transformations.

Definition 3.2.12 (Gauge transformation [62, p. 268]). Given a principal H-
bundle π : P Ñ M a gauge transformation is a smooth local map s : U Ñ H
where U Ă M is an open subset of the base space. H is called the gauge or
structure group and if the map s is constant over U it is called a rigid gauge
transformation.

Example 3.2.13

Let F be a n-dimensional vector space, then the matrix A performing
a change of coordinates is an invertible n ˆ n-matrix; i.e. an element
of GL(n): the group of invertible n ˆ n-matrices. Hence the principal
bundle in question is a principal GL(n)-bundle and the gauge transfor-
mation is a local map s : U Ñ GL(n).

In the local coordinates from the local trivialisation above, and assuming a
choice of fibre basis ωα, we obtain coordinates for a point p P E: ϕ(p) = (xi, yα).
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Performing a gauge transformation through the local map s then amounts to

(xi, yα) ÞÑ (xi, s(π(p))βαy
α). (3.30)

This is a vertical transformation as it only changes the coordinates in the fibre.

A different viewpoint on the gauge transformations are through the lens of
local trivialisations. Since a local trivialisation maps π´1(U) to U ˆ F two
different trivialisations ϕa and ϕb can both trivialise π´1(Ua X Ub). Now, let
ϕa : π´1(Ua X Ub) Ñ (Ua X Ub) ˆ Fa and ϕb : π´1(Ua X Ub) Ñ (Ua X
Ub) ˆ Fb, where Fa = Fb = F are simply a relabelling of the typical fibre to
ease bookkeeping. Hence we get the map

(Ua X Ub) ˆ Fa
ϕ´1
a

ÝÑ π´1(Ua X Ub)
ϕb

ÝÑ (Ua X Ub) ˆ Fb. (3.31)

Letting ϕab := ϕa ˝ ϕ´1
b we get that this map acts as

ϕab(x, y) = (x, tab(x)y) (3.32)

where tab(x) : Fb Ñ Fa and since Fa and Fb are the same space we get that
tab(x) is a fibre automorphism. Specifically, it needs to be a homeomorphism.
The more common use case of this viewpoint is when the typical fibre F is a
H-space, for some topological group H. Then the fibre automorphism tab(x)
is an element of the group H and tab can be viewed as a local smooth map
tab : Ua X Ub Ñ H, which is the same thing as the gauge transformation
defined above in definition 3.2.12. This is visualised in fig. 3.9.

The map tab generally needs to satisfy three conditions

taa(x) = 1 (3.33)
tab(x) = tba(x)

´1 (3.34)
tac(x) = tab(x)tbc(x) (3.35)

where the third is known as the cocycle condition.

Depending on how the bundle is constructed, the active transformation by
a diffeomorphism might induce a vertical transformation in addition to the
horizontal transformations.

As I have hinted, we are going to view data as “living on a manifold”. Specifi-
cally, the data will live locally in the fibres, and to formalise this we need the
notion of a section.

Definition 3.2.14 (Section). A (cross) section s of a bundle π : E Ñ M is a
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(Ua X Ub) ˆ F

π´1(Ua X Ub) Ua X Ub

(Ua X Ub) ˆ F

ϕba

ϕa

ϕb

ϕab

Figure 3.9: Fibre automorphism due to a change in local trivialisations.

Example 3.2.16: Local symmetry

A toy example of local, gauge, symmetries relating to physics is the
following: Let π : E Ñ M be a vector bundle where the fibre is
C and let P be a principal U(1)-bundle. That is, the group acts by
multiplication by exp(iθ) for θ in [0, 2π).
Then, let ϕ P Γ(E) be a section of E, and construct the object ϕ(x)ϕ(x).
Transforming this locally through ϕ(x) ÞÑ [sŹϕ](x) = s(x)ϕ(x) where
s is a map M Ñ U(1), we see that ϕ(x)ϕ(x) is invariant:

ϕ(x)ϕ(x) ÞÑ s(x)ϕ(x)s(x)ϕ(x) = ϕ(x)s(x)s(x)ϕ(x) = ϕ(x)ϕ(x),
(3.36)

since s(x)s(x) = 1. This shows that ϕ(x)ϕ(x) has a local U(1)-
symmetry.

map s : M Ñ E satisfying (π ˝ s)(x) = idM(x) = x. The space of sections of
the bundle E is denoted Γ(E), and if the bundle is a vector bundle the space
of sections is a vector space.

Remark 3.2.15. Depending on the type of bundle global continuous sections
might exist, or they might not. For example, a non-trivial principal bundle has
no continuous global sections.

Sections, and objects constructed from sections can have group symmetries on
a local level (example 3.2.16), a global level (example 3.2.18), or both.

Whereas one can have a local structure without any additional constraints or
actions on the base manifold M, to get a global structure one must equip the
manifold with a group action so that one can move points in M through this
action. To formalise this we need equivariant bundles.



66 3. Mathematical background

Example 3.2.18: Examples of data with global structure

An example of data with a global structure is vector fields on homo-
geneous spaces. A specific instance of this, under some assumptions,
are wind fields on Earth. We can rotate the Earth through elements of
SO(3) and as we do the vectors follow along and are rotated accordingly.
Specifically, assuming f : U Ñ R2 assigns a tangent vector, horizontal
wind, to each point p P U Ă S2, we get that this function is transformed
as

[gf ](p) = ρ(g)f(g´1p), (3.38)

where g rotates the points in U and ρ(g) ensures that the tangent vector
is rotated as well and not just moved. This is shown in fig. 3.10.

Figure 3.10: A rotation performed on wind data from 2023-01-07. Data
form [101].

Definition 3.2.17 (Equivariant bundle). An equivariant bundle is a bundle
where both the total space and the base space are G-spaces and the projection
is equivariant, i.e.

π ˝ (gŹE) = (gŹM) ˝ π, @g P G. (3.37)

However, to work with these local sections one needs to choose local coordinates
(Uα, φα) and while doable, this is bothersome. What one can do instead is —
if one is working with sections of an associated bundle — to lift the sections
defined locally to global maps on a corresponding principal bundle.

Theorem 3.2.19 (Theorem §10.12 in [76]). Let P be an principal H-bundle
and C8(P, S)H be the space of smooth maps f : P Ñ S satisfying the Mackey
constraint f(ph) = h´1 ŹS f(p) for all p P P and h P H. Further, let C8(P ˆH
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S) be the space of smooth sections of the associated bundle P ˆH S. Then there
is an isomorphism C8(P, S)H – C8(P ˆH S).

This allows to work with the lifted functions in a “coordinate free” way as the
local coordinates are given through transformations by elements in H.

However, this is more powerful when considering equivariant bundles over ho-
mogeneous spaces. The homogeneous structure of the base space X – G/H
induces a group action on sections f P Γ(G ˆρ V ) of the associated vector
bundle Gˆρ V through

[ρΓ(k)f ](g) = ρGˆρV (g)f(k
´1g), (3.39)

where ρGˆρV acts on elements of the associated vector bundle as

ρGˆρV (k)[g, v] = [kg, v]. (3.40)

Now we can state a corollary to theorem 3.2.19.

Corollary 3.2.20. The space of smooth sections of an associated vector bundle
Γ(G ˆρ V ) is isomorphic to the subspace of smooth functions in the induced
representation IndG,8H ρ.

In this way we are free to work with sections in local coordinates or with global
elements of the induced representation. Due to the simplicity and the baked in
symmetry of the Mackey constraint we will generally work in the lifted setting.
This link between the induced representation and the sections can be visualised
through the Cartan mixing diagram.

Definition 3.2.21 (Cartan mixing diagram [151, p. 33]). Given a principal
H-bundle α : P Ñ M and a left H-space X, Cartan’s mixing diagram is the
commutative diagram

P P ˆX X

M P ˆH X HzX

α

π1 π2

β γ

τα τβ

(3.41)

where

τα([p, x]) = α(p), τγ([p, x]) = γ(x) = Hx

and β is the quotient map of P ˆX with respect to the diagonal right H-action
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π(p)
π(q)

VpP

HqP

VqP

HpP p

q

P

M

π

Figure 3.11: A visualisation of the vertical and a horizontal space in a principal
bundle. Note that the vertical spaces are tangential to the fibres while the horizontal
spaces are, without a connection, arbitrary.

(p, x)h = (ph, h´1x). Note that τγ is well-defined since all representatives (p, x)
in the same equivalence class map to the same object Hx in HzX. Moreover,
by symmetry, if γ is a principal H-bundle, then τβ is a fibre bundle with fibre
P .

Several times I have emphasised the local nature of the fibre bundles, and for
good reason: due to the potential curvature there is no a priori way to easily
relate objects in different fibres — that is, over different points in the base
manifold — to each other. Formulated differently, there is no clear way how to
move objects between fibres. To achieve this we need the concept of how the
fibres connect to each other, i.e. if you move in the base manifold, how would
this motion in the base space induce a motion in the fibres of the total space.
This concept is called the connection of the bundle or manifold, and the type
of connection which is relevant depends on the bundle in question.

A connection is generally formulated in terms of vertical and horizontal sub-
spaces.

Definition 3.2.22 (Vertical and horizontal subspace). Given a bundle π :
E Ñ M the vertical subspace VeE Ă TeE at e P E is the kernel ker(dπe) of
the pushforward dπ : TeE Ñ Tπ(e)M. The horizontal subspace HeE is any
subspace of TeE such that HeE X VeE = t0u and

TeE = VeE ‘HeE. (3.42)

Note that nothing in this definition states how one arrives at which horizontal
subspace to choose, that is the purpose of the connection. I will now define a
special formulation of connections that work for any smooth bundle but here
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stated specifically for principal H-bundles.

Definition 3.2.23 (Ehresmann connection). Let π : P Ñ M be a principal
H-bundle where the right action of h P H is denoted Rh : P Ñ P . Then an
Ehresmann connection is a choice of horizontal subspaces HpP for each p P P
such that the pushforward of the right action Rh maps horizontal spaces to
horizontal spaces, that is

(dRh)p(HpP ) = HRh(p)P, @h P H, p P P. (3.43)

We can be more specific and utilise that H is a Lie group. Specifically, as we
have exp : h Ñ H we can generate vertical tangent vectors from Lie algebra
elements: Let A P h be a Lie algebra element, then (XA)p P VpP is a vertical
tangent vector at p defined through

XA
p :=

d

dt
(pŸ exp(tA))

ˇ

ˇ

ˇ

ˇ

t=0

. (3.44)

With this we can define the connection one-form.

Definition 3.2.24 (Connection one-form). The connection one-form is a map
ωp : TpP Ñ h satisfying

ωp(X
A
p ) = A,@p P P A P h, (3.45)

and
(Rh)

˚ω = Adh´1 ˝ ω, (3.46)

which when acting on Xp P TpP expands to

ωRh(p)((dRh)p(Xp)) = Adh´1(ωp(Xp)). (3.47)

Equation (3.46) is the specific case of eq. (3.43). With such a map ω we can
define the horizontal subspace as

HpP := ker(ωp). (3.48)

Additionally, the presence of ω allows for a definition of a metric on the principal
bundle P given that the base manifold M has a metric gM. The metric on P
can be set to

gP = π˚gM + kω, (3.49)
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such that

gP,p(Xp, Yp) = gM,π(p)(dπp(Xp), dπp(Yp)) + k(ωp(Xp), ωp(Yp)). (3.50)

Here k is an Ad invariant metric on h. This means that gP is dRh invariant:

dRh(gP,p)(Xp, Yp) = gP,Rh(p)(dRh(Xp), dRh(Yp)). (3.51)



4 Differential geometry and
equivariance

In this chapter I provide an improved version of the theory presented in chapter
2 of Paper I. Specifically, I lift the entire framework naturally to the total space
of a (bi)principal bundle and this allows a direct connection between the lifted
framework and the normal CNN as well as the group equivariant CNNs on
homogeneous spaces [29].

It has been stated in several works that weight sharing and equivariance are
deeply connected [159, 164, 30, 78]. Most of these works have approached
this connection in different ways, from representation theory to the definition
of a CNN. However, I find that taking the approach of differential geometry
is very useful and as such I want to first show how weight sharing appears
in a differential geometry context. Using this approach I will then present a
convolutional-like layer which is equivariant to the fibre preserving action of a
principal bundle.

4.1 Example: the ordinary CNN

A standard result is that a convolutional layer is translation equivariant. To
formulate this mathematically, let f : R2 Ñ Vin be our data — e.g., for
an image Vin = R3 where the three numbers represent RGB values — and
[Lzf ](x) = f(x ´ z) be the left regular representation translating functions

71
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over R2. With this notation we can define a convolutional layer1 as

[ϕf ](x) =

ż

R2

[Lxpκ](y)f(y)dy =

ż

R2

pκ(y ´ x)f(y)dy, (4.1)

where pκ : R2 Ñ Hom(Vin, Vout) is the learnable convolution kernel.

That this is equivariant with respect to translation, i.e.

[Lz[ϕf ]](x) = [ϕ[Lzf ]](x), (4.2)

is straightforward to show:

[Lz[ϕf ]](x) = [ϕf ](x´ z) (Def. of Lz)

=

ż

R2

pκ(y ´ (x´ z))f(y)dy (Def. of ϕ)

=

ż

R2

pκ(y + z ´ x)f(y)dy

=

ż

R2

pκ(y1 ´ x)f(y1 ´ z)dy1 (y1 = y + z)

=

ż

R2

pκ(y1 ´ x)[Lzf ](y
1)dy1 (Def. of Lz)

= [ϕ[Lzf ]](x). (Def. of ϕ)

(4.3)

The convolutional layer in eq. (4.1) is a special case of the more general linear
map

[rϕf ](x) =

ż

R2

κ(x, y)f(y)dy. (4.4)

To obtain the convolutional layer in eq. (4.1) one imposes the weight sharing
condition, which is an inductive bias

κ(x, y) = κ(x´ z, y ´ z), @z P R2 (4.5)

and this allows the definition of a one-argument kernel pκ(y´x) := κ(0, y´x) as
through eq. (4.5) we get κ(0, y ´ x) = κ(x, y). One can also derive this weight
sharing constraint from assuming that rϕ is translation equivariant, hence they
are equivalent.

As stated I now want to show how this weight sharing constraint appears when
approaching using differential geometry. To do this, we must first introduce

1This is technically a cross correlation but in machine learning contexts this is called a
convolutional layer.
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some new viewpoints.

Instead of starting from a general kernel κ : R2 ˆ R2 Ñ Hom(Vin, Vout) de-
pending on two points x, y, we will let κ : R2 ˆ TR2 Ñ Hom(Vin, Vout). That
is, the kernel depends on a point x in the base manifold (R2) and a tangent
vector Xx P TxR2. Intuitively, this tangent vector is the relative position of x
and y. 2 Let now TXx

(x) be the map that moves x along the curve generated
by the tangent vector Xx for unit time. In other words, TXx

(x) is the unit time
geodesic flow. Since R2 is flat, this curve is a straight line. See fig. 4.1 for a
visualisation of these concepts.

Remark 4.1.1. There is a useful fact for the geodesic flow. Stated in general
terms: if φ : M Ñ N is a diffeomorphism and TXx is the flow of Xx P TxM
for any amount of time, then

φ(TXx
(x)) = T(dφ)x(Xx)(φ(x)), (4.6)

where (dφ)x(Xx) P Tφ(x)N is the pushforward of Xx P TxM by φ. This can
be depicted as a commutative diagram:

M M

N N

TXx

φ φ

T(dφ)x(Xx)

(4.7)

This fact will come in useful at several points, specifically in the special case
where the diffeomorphism φ : M Ñ M is the translation operator. For a
visualisation of the special case φ : R2 Ñ R2 — where the manifold is flat —
see fig. 4.2. On the other hand, for the special case of the right fibre preserving
translation Rh : P Ñ P in a principal H-bundle, see fig. 4.3.

With these conceptual, and notational, changes we can now define the integral
map in this context:

Definition 4.1.2. Let f : R2 Ñ Vin be the input feature map. Then let ϕf
be the map

[ϕf ](x) =

ż

TxR2

κ(x,Xx)f(TXx
(x))dXx, (4.8)

where κ : R2 ˆ TR2 Ñ Hom(Vin, Vout) is the integration kernel.

2This holds only for flat spaces like Rn.
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x

y

(a) Figure of two points

x

TXx
(x)

Xx

(b) Figure of point and relative vector

Figure 4.1: Two ways of viewing the inputs to the kernel κ. The left panel shows
the standard approach of viewing the input as two points, while the right panel shows
the approach taken here where we select one point as the “base point” x and obtain
the other point y by translating x by a vector Xx. That is, y = TXx(x).

Note that this map is not yet equivariant. In this setup, it is now natural to
view a translation by z as a diffeomorphism z : R2 Ñ R2 acting as z(x) = x´z.
This also generates a pushforward dzx : TxR2 Ñ Tz(x)R2.

We can now define the translation action on maps f : R2 Ñ V as [Lzf ](x) =
(f ˝ z)(x) = f(z(x)) = f(x ´ z), and check what condition needs to hold to
make rϕ equivariant:

[ϕ[Lzf ]](x)
!
= [Lz[ϕf ]](x). (4.9)

Theorem 4.1.3. The map ϕ defined in definition 4.1.2 is translation equiv-
ariant, that is

[Lz[ϕf ]](x) = [ϕ[Lzf ]](x), (4.10)

iff the kernel κ : R2 ˆ TR2 Ñ Hom(Vin, Vout) satisfies

κ(x,Xx) = κ(z(x), dzx(Xx)), @z P R2. (4.11)

That is, equivariance is equivalent to sharing the kernel weights over R2.

Proof. Starting with the right hand side of eq. (4.9) we note that [Lz[ϕf ]](x) =
[ϕf ](z(x)) and

[ϕf ](z(x)) =

ż

Tz(x)R2

κ(z(x), Xz(x))f(TXz(x)
(z(x)))dXz(x). (4.12)

Now, noting that the pushforward dzx : TxR2 Ñ Tz(x)R2 is an isomorphism,
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we can use it to change from integrating over TxR2 to integrating over Tz(x)R2

by setting Xz(x) = dzx(Xx). Additionally, the pushforward dzx is an isometry
and hence we do not get any additional volume factor in the integral. This
yields
ż

Tz(x)R2

κ(z(x), Xz(x))f(TXz(x)
(z(x)))dXz(x)

=

ż

TxR2

κ(z(x), dzx(Xx))f(Tdzx(Xx)(z(x)))dXx.

(4.13)

On the left hand side of eq. (4.9) we have

[ϕ[Lzf ]](x) =

ż

TxR2

κ(x,Xx)[Lzf ](TXx(x))dXx

=

ż

TxR2

κ(x,Xx)f(z(TXx(x)))dXx.

(4.14)

This is already close to eq. (4.13) and we now need to relate Tdzx(Xx)(z(x)) and
z(TXx

(x)). As was stated in remark 4.1.1 we have

Tdzx(Xx)(z(x)) = z(TXx(x)), (4.15)

which is visualised in fig. 4.2. Using this in eq. (4.13) we arrive at that the
following equality must hold for ϕ to be equivariant:
ż

TxR2

κ(z(x), dzx(Xx))f(z(TXx
(x)))dXx

!
=

ż

TxR2

κ(x,Xx)f(z(TXx
(x)))dXx.

(4.16)
Since this needs to hold for all f we can extract the point wise condition

κ(z(x), dzx(Xx))
!
= κ(x,Xx), (4.17)

which needs to hold for all translations z.

This is just spatial weight sharing and allows us, with the choice of some point
x0 at the origin, to define a one-argument kernel

pκ : Tx0R2 Ñ Hom(Vin, Vout), (4.18)

in terms of the two-argument kernel using eq. (4.17)

pκ(X) := κ(x0, X), (4.19)
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x

z(x)
T(dz)x(Xx)(z(x))

TXx
(x)

z z

Xx

(dz)x(Xx)

Figure 4.2: A visualisation of the commutativity of the flow and pushforward on
R2. This is a special case of remark 4.1.1 where manifold is flat.

which can then be moved to any other point on R2 by a translation.

Hence, we again land back in weight sharing but through the lens of differential
geometry, specifically sharing the kernel between different tangent spaces. This
notion will be useful in the next section where I present a similar derivation for
a convolutional-like layer equivariant to vertical transformations.

4.2 Equivariance in biprincipal bundles

The example in the previous section explored ordinary convolutional layers from
a differential geometry point of view. One can view the diffeomorphism — the
translation of the plane — used there as a purely horizontal transformation. 3

But can one formulate something similar for the purely vertical transformations
that are common in principal bundles? As we will see in this section: yes, it
is possible to formulate a similar statement for functions defined on principal
bundles, or more specifically biprincipal bundles.

In this section we will assume that the base space M is a Riemannian manifold,
that is, M is a smooth manifold with a smoothly varying metric gM.

First, we introduce the biprincipal bundle, and to do this we need the definition
of a torsor, repeated here for convenience.
Definition 4.2.1 (Torsor). Given a group H, a left (right) H-space X is a left
(right) torsor if the action of H on X satisfies that

3As we will see in section 4.2.1 the translation of the plane is also naturally viewed as a
vertical transformation of the principal bundle π : R2 Ñ t0u.
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1. H acts freely: for each h P H it holds that @z P X, hŹx = x implies
that h = e.

2. H acts transitively: @x, y P X there exists h P H such that y = hŹx.

A right torsor H-torsor is defined identically, but with a right action.

In essence, if X is a H-torsor that means that X is isomorphic to H as a
set. Intuitively, X is H but without an origin where only relative elements are
available. In a principal H-bundle P the fibres are H-torsors — usually taken
as right H-torsors — and only when given a choice of local trivialisation, e.g.,
a choice of origin, can the fibres be identified with the actual group H. The
notion of a principal H-bundle can be generalised slightly to yield a biprincipal
bundle. But first we need the notion of a bitorsor.

Definition 4.2.2 (Bitorsor [57, 16]). A (G,H)-bitorsor X is simultaneously a
left G-torsor and a right H-torsor such that their actions commute:

Rh(Lg(x)) = Lg(Rh(x)), @x P X. (4.20)

Remark 4.2.3. As the X is both a G and a H-torsor, this means that G
and H are isomorphic as groups through a non-canonical isomorphism which
depends on a choice of origin x0 P X.

With the definition of the bitorsor we can now define the biprincipal bundle.

Definition 4.2.4 (Biprincipal (G,H)-bundle [16]). A biprincipal (G,H)-bundle
is a fibre bundle π : P Ñ M where each fibre Px over x P M is a (G,H)-
bitorsor.

In this section we will have π : P Ñ M be a biprincipal (G,H)-bundle
assumed to be a smooth manifold.

Now with the biprincipal (G,H)-bundle introduced we turn to the data. We
are going to assume that our feature vectors lies in a H-representation (ρ, V ).
In this setting we let feature maps be sections of the associated vector bundle
P ˆρ V = (P ˆ V )/H where π : P Ñ M is a biprincipal (G,H)-bundle.
Note, that since P has a defined left G action we also have a G action on the
equivalence classes of the associated vector bundle:

g[p, v] = [gp, v], (4.21)

and while the equivalence class is invariant to H, this left action maps between
different equivalence classes although the fibre is preserved.
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By theorem 3.2.19, which is formally formulated for principal bundles can be
extended to the biprincipal case, we can equivalently work with functions on
the (bi)principal bundle f : P Ñ V satisfying the Mackey condition

f(ph) = ρ(h´1)f(p), @h P H. (4.22)

For the sake of notational neatness, let Iρ denote the space of such functions.
Additionally we can equip the vector space V with a norm making it a Banach
space and we will restrict our feature maps f to be smooth and square Bochner-
integrable.

The biprincipal nature of P yields a natural G-action on the space of Iρ as

[gŹ f ](p) = f(Lg´1(p)), (4.23)

where Lg´1(p) = g´1p.

Now we present the map ϕ inspired by eq. (4.8) which acts on input fea-
ture maps f P Iρin . Initially we only know that the output ϕf is a map
ϕf : P Ñ Vout and we will later investigate what is needed to obtain ϕf P

Iρout .

Definition 4.2.5. For f P Iρin let ϕ : Iρin Ñ Map(P, Vout) be a map defined
as

[ϕf ](p) =

ż

BR(p)

κ(p,Xp)f(TXp(p))dXp, (4.24)

where κ : P ˆ TP Ñ Hom(Vin, Vout) is an integration kernel, and TXp
(p)

is the map which transports p along the curve in P defined by the flow of
the tangent vector Xp for unit time. Additionally, the integration domain
BR(p) :=

␣

Xp P TpP |
a

(gP )p(Xp, Xp) ă R
(

is an open ball in the tangent
space TpP at p P P . The metric gP is the metric introduced at the end
of section 3.2 and dXp is the volume form in TpP with respect to this metric.

Note, as stated in section 3.2, this metric is invariant to the right translation
by H on the fibres, but this does not hold for the left action. In general, while
dRh preserves the horizontal subspaces, dLg mixes the vertical and horizontal
parts of the tangent vectors and is not an isometry.

To ensure that ϕ is a continuous and bounded map we will additionally assume
that κ is smooth in both p and Xp as well as κ(p,Xp) is bounded for each
p and Xp P TpP — this is ensured as Vin and Vout are assumed to be finite
dimensional vector spaces. Since Vin and Vout are finite-dimensional, and κ is
assumed smooth in both p and Xp, the point wise boundedness of κ(p,Xp)
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implies that
sup
pPP

sup
XpPTpP

}κ(p,Xp)}Hom(Vin,Vout)
ă 8. (4.25)

Opposed to the previous section where we only needed to deal with the transla-
tion — and hence weight sharing — of the layer, here we additionally have the
Mackey condition to take into account. Hence, to make sure that ϕf P Iρout

we have the following lemma.

Lemma 4.2.6. Let ϕ be defined as in definition 4.2.5, then [ϕf ] P Iρout iff the
kernel satisfies

κ(Rh(p), (dRh)p(Xp)) = ρout(h
´1)κ(p,Xp)ρin(h), @h P H. (4.26)

Proof. First assume that ϕf P Iρout , that is

[ϕf ](Rh(p)) = ρout(h
´1)[ϕf ](p). (4.27)

Now we use the definition of ϕ to get

[ϕf ](Rh(p)) =

ż

BR(Rh(p))

κ(Rh(p), XRh(p))f(TXRh(p)
(Rh(p)))dXRh(p), (4.28)

then, as in the previous section, we change our integration domain through the
pushforward (dRh)p : HpP Ñ HRh(p)P and since (dRh)p is an isomorphism
— even an isometry and hence dXp = dXRh(p) — we can write XRh(p) =
(dRh)p(Xp). And since dRh is an isometry we have (dRh)

´1
p (BR(Rh(p))) =

BR(p) which yields

[ϕf ](Rh(p)) =

ż

BR(p)

κ(Rh(p), (dRh)p(Xp))f(T(dRh)p(Xp)(Rh(p)))dXp. (4.29)

Recall now remark 4.1.1 and note that, similar to the flat case of the ordinary
CNN in section 4.1, we have

T(dRh)p(Xp)(Rh(p)) = Rh(TXp(p)), (4.30)

see figure fig. 4.3 for a visualisation. Using this we get

[ϕf ](Rh(p)) =

ż

BR(p)

κ(Rh(p), (dRh)p(Xp))f(Rh(TXp
(p)))dXp, (4.31)
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M

P

p

Rh(p)

Xp

(dRh)p(Xp)

T(dRh)p(Xp)(Rh(p))

TXp
(p)Rh

Rh

Pπ(p) Pπ(TXp (p))

Figure 4.3: The commutativity of the pushforward and the (geodesic) flow. This
is a special case of remark 4.1.1 for when the diffeomorphism is the fibre preserving
right action Rh : P Ñ P .

which, since f P Iρin , becomes

[ϕf ](Rh(p)) =

ż

BR(p)

κ(Rh(p), (dRh)p(Xp))ρin(h
´1)f(TXp

(p))dXp. (4.32)

Now going from the other side of eq. (4.27) we know that [ϕf ](Rh(p)) =
ρout(h

´1)[ϕf ](p), this means that

[ϕf ](Rh(p)) = ρout(h
´1)[ϕf ](p)

=

ż

BR(p)

ρout(h
´1)κ(p,Xp)f(TXp

(p))dXp,
(4.33)

after moving ρout(h
´1) inside the integral.

Finally, as eq. (4.32) and eq. (4.33) need to be equal for all f we obtain that

κ(Rh(p), (dRh)p(Xp))ρin(h
´1) = ρout(h

´1)κ(p,Xp), (4.34)

and multiplying both sides with ρin(h) from the right results in the wanted
condition:

κ(Rh(p), (dRh)p(Xp)) = ρout(h
´1)κ(p,Xp)ρin(h). (4.35)

To obtain the other direction, simply follow this proof backwards.

This shows that ϕ is actually a map between Iρin to Iρout . To get equivariance
requires a bit more work.
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First, we use the fact that P is a biprincipal (G,H)-bundle to define the left
group action of G acting on Iρ:

[gŹ f ](p) = f(g´1p). (4.36)

Equivariance of ϕ then means

[gŹ[ϕf ]](p) = [ϕ[gŹ f ]](p). (4.37)

We can formulate the requirement for equivariance as a lemma:

Lemma 4.2.7. Let ϕ be defined as in definition 4.2.5 and let pG ď G be any
subgroup of G. Then ϕ is equivariant iff the kernel satisfies

1BR(p)(Xp)κ(p,Xp)

= 1
rBR(p)(Xp)κ(Lg´1(p), (dLg´1)p(Xp))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇ ,
(4.38)

for all g P pG, where rBR(p) = (dLg´1)´1
p (BR(Lg´1(p))).

That is, to obtain pG-equivariance the kernel needs to be shared along the pG-
orbit in the fibre.

Proof. Assume that ϕ is pG-equivariant, that is

[gŹ[ϕf ]](p) = [ϕ[gŹ f ]](p), @g P pG. (4.39)

First, expand the left hand side [gŹ[ϕf ]](p) = [ϕf ](Lg´1(p)) and hence

[gŹ[ϕf ]](p) =

ż

BR(Lg´1 (p))

κ(Lg´1(p), XLg´1 (p))

f(TXL
g´1 (p)

(Lg´1(p)))dXLg´1 (p).

(4.40)

Now we use (dLg´1)p : TpP Ñ TLg´1 (p)P to change coordinates as XLg´1 (p) =

(dLg´1)p(Xp). Here, as dLg´1 is not an isometry, we get that dXLg´1 (p) =
ˇ

ˇdet((dLg´1)p)
ˇ

ˇdXp. Note that the new integration domain becomes

(dLg´1)´1
p (BR(Lg´1(p))), (4.41)
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which we will denote as rBR(p) for brevity. Together this yields

[gŹ[ϕf ]](p) =

ż

rBR(p)

κ(Lg´1(p), (dLg´1)p(Xp))

f(T(dLg´1 )p(Xp)(Lg´1(p)))
ˇ

ˇdet((dLg´1)p)
ˇ

ˇdXp.

(4.42)

As before, we use the fact, stated in remark 4.1.1, that

T(dLg´1 )p(Xp)(Lg´1(p)) = Lg´1(TXp
(p)), (4.43)

and hence

[gŹ[ϕf ]](p) =

ż

rBR(p)

κ(Lg´1(p), (dLg´1)p(Xp))

f(Lg´1(TXp
(p)))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇdXp.

(4.44)

We now note that f(Lg´1(TXp(p))) = [gŹ f ](TXp(p)) and hence

[gŹ[ϕf ]](p) =

ż

rBR(p)

κ(Lg´1(p), (dLg´1)p(Xp))

[gŹ f ](TXp
(p))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇdXp.

(4.45)

To compare this with coming from the other direction we expand this to an
integral over the entire TpP by adding the indicator function 1(dLg´1 )p(BR(p))

to arrive at

[gŹ[ϕf ]](p) =

ż

TpP

1
rBR(p)(Xp)κ(Lg´1(p), (dLg´1)p(Xp))

[gŹ f ](TXp
(p))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇdXp.

(4.46)

Now we turn the attention to the right hand side on eq. (4.39) and expand

[ϕ[gŹ f ]](p) =

ż

BR(p)

κ(p,Xp)[gŹ f ](TXp
(p))dXp. (4.47)

Then, as in the final step of [gŹ[ϕf ]] extend this integral to TpP by adding
the indicator function 1BR(p). This gives

[ϕ[gŹ f ]](p) =

ż

TpP

1BR(p)(Xp)κ(p,Xp)[gŹ f ](TXp
(p))dXp. (4.48)

Then, as the left and right hand side of eq. (4.39) must be equal for all feature
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maps f we must have that eq. (4.46) and eq. (4.48) are equal for all f . This
allows us to extract the point wise equality

1BR(p)(Xp)κ(p,Xp)

= 1
rBR(p)(Xp)κ(Lg´1(p), (dLg´1)p(Xp))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇ ,
(4.49)

for all g P pG. To get pG-equivariance from eq. (4.49) simply perform this proof
backwards.

Now we can finalise this section by collecting these results into a theorem.
Theorem 4.2.8 (Equivariance in biprincipal bundle). Let π : P Ñ M be a
biprincipal (G,H)-bundle and let ϕ be defined as in definition 4.2.5, then

1. ϕ : Iρin Ñ Iρout iff κ satisfies lemma 4.2.6, that is

κ(Rh(p), (dRh)p(Xp)) = ρout(h
´1)κ(p,Xp)ρin(h), @h P H, (4.50)

and;

2. the map ϕ is pG ď G-equivariant, that is [gŹ[ϕf ]](p) = [ϕ[gŹ f ]](p), iff
the kernel satisfies the weight sharing in lemma 4.2.7:

1BR(p)(Xp)κ(p,Xp)

= 1
rBR(p)(Xp)κ(Lg´1(p), (dLg´1)p(Xp))

ˇ

ˇdet((dLg´1)p)
ˇ

ˇ ,
(4.51)

for all g P pG, where rBR(p) = (dLg´1)´1
p (BR(Lg´1(p))).

Proof. The proof follows immediately from lemma 4.2.6 and lemma 4.2.7.

There is one final important detail, namely the role of the indicator functions
in lemma 4.2.7. Since the condition eq. (4.38) should hold for all g P G we get
problems when G is non-compact because through this we can reduce the do-
main of the indicator function on the RHS to arbitrarily small domain. Taking
the infimum of both domains we arrive at the kernel can only be defined for
Xp = 0. This would reduce the map fully to a pointwise map of the features
and is the same as the 1 ˆ 1 GM-convolutions in [159, p. 208].

Naively we could try to avoid this by initially, in definition 4.2.5, integrating
over the entire tangent space TpP instead of over the open ball BR(p). This
would seemingly remove the support constraint resulting in a constraint

κ(p,Xp) = κ(Lg´1(p), (dLg´1)p(Xp))
ˇ

ˇdet((dLg´1)p)
ˇ

ˇ , @g P pG. (4.52)
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However, as κ is bounded the only solution for eq. (4.52) that works for all
g P pg is that κ = 0.

One solution that allows for spatially extended kernels is that resctrict G such
that Lg is an isometry for all g. In that case we get that BR(Lg´1(p)) =
(dLg´1)p(RR(p)) remains the same integration domain. This yields a “proper”
weight sharing which does not collapse:

κ(p,Xp) = κ(Lg´1(p), (dLg´1)p(Xp)), @g P pG. (4.53)

In [159, p. 225] this is referred to as isometry equivariance.

4.2.1 Relation to the ordinary CNN case

In section 4.1 I walked through the formulation of a normal CNN in this dif-
ferential geometry setting, however there is one significant difference to the
formulation in theorem 4.2.8. For the standard CNN case our feature maps
have a trivial representation ρ = id and hence the biprincipal framework is not
needed — just a simple principal bundle suffices. Specifically, a normal CNN
is obtained through a principal bundle π : R2 Ñ t0u.

4.2.2 Relation to equivariant CNNs on homogeneous spaces

This formulation stated above has some close connections to the fibre bundle
perspective of the equivariant CNN on homogeneous spaces [29]. That for-
mulation of equivariant CNNs is based on viewing a homogeneous space G/H
as the base space of a principal H-bundle where the right H-action preserves
fibres and the left G-action moves between fibres. This is visualised in fig. 4.4.

In this way one of course attains both a left G and a right H action on the
total space as in the biprincipal bundle case. In the biprincipal case, however,
we need that G and H are isomorphic and that both G and H-actions leave
the fibres invariant.



4.3. Coordinate independence and spatially local actions 85

G/H

G

gx
s(gx)

x

s(x)
h(x, g)

g

g

Figure 4.4: A visualisation of of the left G action moving between the fibres and
the map h : G/H ˆ G Ñ H encoding the twist in the fibres, essentially determining
the connection. Figure is figure 3 in Paper IV.

4.3 Coordinate independence and spatially lo-
cal actions

For more details on coordinate independent networks I refer the interested
reader to Weiler’s PhD thesis [159]. I would, however, like to elaborate on a
specific aspect. Namely, discuss the effects of local transformations on networks
consisting of several layers or local transformations of foreground elements.

As mentioned before, there are two viewpoints on transformations: active trans-
formations in which the data, or underlying manifold, is actively moved around
and passive transformations in which a change of local coordinates makes it look
like the manifold is transformed.

A cornerstone on this discussion is the concept of coordinate independent net-
work, specifically a coordinate independent CNN ϕ. To illustrate coordinate
independence, let π : E Ñ M be a vector bundle with typical fibre V being
a representation ρ of the structure group G of M. Also let U Ă M be an
open set, and (φA, ψA) and (φB , ψB) be two local trivialisations assigning co-
ordinates φA/B on U and fibre coordinates ψA/B on V . Additionally, assume
that the coordinate representations φA(U) and φB(U) of U are related by some
group transformation

φA(U) = gABφB(U), (4.54)
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and similarly for the fibre coordinates

ψA(V ) = ρ(gAB)ψB(V ). (4.55)

Now, if f : U Ñ V is a section of E we can express f in the different local
trivialisations and compare how they relate. The coordinate transformations
are illustrated in the commutative diagram below.

RnA VA

M V

RnB VB

fA

gBA ρ(gBA)
f

φA

φB

ψA

ψB

gAB

fB

ρ(gAB) (4.56)

By following these maps we arrive at

fA(xA) = ρ(gAB)fB(gBAxA), (4.57)

showing how to change the coordinate representation of the feature map f . A
coordinate independent CNN is a map which is consistent under a change of
coordinates on the base manifold as described above.

Let us first discuss local active transformations and a assume that ϕ is a co-
ordinate independent network which, for the sake of argument, computes a
gradient of the data in its receptive field. Further assume that the “back-
ground” is uniform so that a local transformation only affects the foreground
objects of interest. Then ϕ will be equivariant to all group actions which are
limited to a single receptive field. See the leftmost, green, patch centred at
P1 in the top and bottom row in fig. 4.5 which is acted on by a local active
transformation contained completely in the patch, while the rightmost, red,
patch centred at P3 is completely untouched. This contained transformation
causes a similar transformation of the feature computed at P1.

However, when a patch includes differently transformed objects, then this gen-
erally cannot be represented as the action of a group element and hence we do
not know a priori how the output on the partially transformed patch relate to
the output on the non-transformed version. This is visualised in the middle,
blue, patch centred at P2 in fig. 4.5; for easier comparison, these patches are
also extracted and shown in fig. 4.6.

The case of local passive transformation is a bit more nuanced. A passive
transformation appears when one assigns different local coordinates to the same
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region. Let (φA, UP1) and (φB , UP2) be two local coordinate charts charts such
that P3 P UP3

Ă UP1
X UP2

. See the top panel of fig. 4.7. This means that
both in the chart intersection U3 we have two possible coordinate systems,
and the coordinate independent network ϕ will be equivariant to the change of
local coordinates by the cart transition map φAB := φA ˝ φ´1

B . The centre of
the middle panel of fig. 4.7 shows the data in their local coordinates and the
chart transition map on their overlap. If however we apply ϕ at P1 and P2 and
the receptive field extends beyond where the charts overlap then there are no
chart transition map relating which we can use to map the output at P1 to the
output at P2. Hence we need to express the output at P1 and P2 relative to
the local coordinates φA and φB respectively, as seen on the outer segments
of the middle panel of fig. 4.7. Now, if we naively applied the next coordinate
independent layer we would mix feature vectors expressed in different local
coordinates, generally one coordinate chart per point, and this would lead to
inconsistencies. To avoid this one can contract the feature vectors with their
basis to arrive at the coordinate free formulation, lower panel in fig. 4.7, which
can then be fed to the next layer without inconsistencies.

As previously stated, for more details on this, see [159].
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P1 P2
P3

P1 P2
P3

g ρ(g)

[ϕf ](P1)

[ϕf ](P2)

[ϕf ](P3)

[ϕ[gŹ f ]](P1)

[ϕ[gŹ f ]](P2)

?

[ϕ[gŹ f ]](P3)

Figure 4.5: Illustration of an active local transformation and the coordinate in-
dependent network ϕ applied to three different positions: P1, P2 and P3 with the
receptive field shown as a circle centred at each position. For the leftmost and right-
most position the receptive field completely covers a foreground element with no
additional details, while the receptive field for the middle position intersects with two
foreground elements in different orientations. When an active local transformation is
applied on the leftmost object g ŹP1, since this is a clear group action g, the output
transforms accordingly [ϕ[g Ź f ]](P1) = ρ(g)[ϕf ](P1). Similarly, the network on P3 is
unaffected. For P2 however, there is no group element relating P2 before and after the
transformation, hence the output of [ϕf ](P2) after the transformation is unknown.
The situation is similar if foreground elements are transformed while a non-uniform
background remains untransformed. In that case there is no group element relating
the patch before the transformation to the same patch after the transformation. Note
that this is a schematic picture, the feature vectors does not need to be tangent vec-
tors, but it is easier to visualise.

Figure 4.6: Illustration of the middle patch of fig. 4.5 showing that no element
of the structure group maps one to the other. Hence the outputs of a coordinate
independent network on each patch are not related by some group action.
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P1 P2

f

A B

fA

fB

φA φB

([ϕfA](P1))A ([ϕfB ](P2))B

φAB

ϕ ϕ

[ϕf ](P1) [ϕf ](P2)

Figure 4.7: Illustration of a passive local transformation — that is, a change in local
coordinates — and a coordinate independent network ϕ. Top panel shows the data
and two different local coordinate charts A and B centred at P1 and P2, respectively.
Middle panel shows the data expressed in these local coordinates — the two circles
in the middle — and the application of ϕ in each coordinate chart yielding [ϕf ]A(P1)
and [ϕf ]B(P2) which are expressed in their respective coordinate systems — the outer
squares. Bottom panel shows these feature vectors combined with their local basis
to yield the geometrical, coordinate free, vectors. Note that if one does not contract
the computed feature vectors with their basis to obtain the coordinate free vectors,
and instead passes the computed feature map [ϕfUP ]UP (P ) — where (φUP , UP ) is
a coordinate chart centred at P — to the next layer, one will lose all coordinate
independence properties as feature vectors computed in different local coordinates
will be mixed.
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4.4 Takeaway

In this chapter I have shown some examples of how equivariance is fundamen-
tally connected to weight sharing on a mathematical level. When turning to
applications, however, it is not enough to know this high level connection but
one must also find an efficient implementation to the task at hand. Due to
the wide variety of tasks, data — including how data is represented and stored
— and models, most efficient implementations are specific to the task and the
intended model design. With that said, there are several published models im-
plementing equivariance for specific cases and data [150, 45, 133, 12, 44, 160,
78] — note that the cited works form by no means an exhaustive list — and
these published models should be the first thing to check when approaching a
problem where equivariance might be useful.

While equivariance can be very useful, one should also keep in mind the limita-
tions, e.g., the impact of local transformations as discussed in section 4.3. One
of those limitations is that equivariant models are, by necessity, less expressive
than non-equivariant models as they are restricted to a subset of the hypothesis
space and as such if the task, or data, does not have the geometrical induc-
tive bias then one should generally not use equivariant networks. However, for
problems where there are theoretical reasons to impose the geometrical induc-
tive bias that equivariance gives, equivariant models can provide a much more
parameter and data efficient model compared to non-equivariant models.



5 Framework for
non-linear maps

This chapter will briefly introduce and discuss section 4 of Paper IV and parts
of chapter 5. Paper IV deals in general with introducing a framework for non-
linear layers between induced representations and putting this new framework
into context with the theory presented for linear, convolutional, layers in [29].

5.1 Brief derivation

In the previous chapter we discussed the case of gauge equivariance on a general
Riemannian manifold. Another interesting case is when the base space is an
G-homogeneous space X. If one picks an arbitrary point x0 P X as the origin,
then there is a subgroup H = StabG(x0) Ă G that stabilises x0. That is, for all
h P H we have hŹx0 = x0. Then one can describe X and the quotient G/H,
or more detailed as a principal H-bundle π : G Ñ G/H.

If the stabiliser H acts through a representation ρ on some vector space V ,
then we can induce a G-representation as the left regular representation on the
space of functions

IndGHρ :=
␣

f : G Ñ V | f(gh) = ρ(h´1)f(g)
(

. (5.1)

That is, G acts on f P IndGHρ as [kŹ f ](g) = f(k´1g). This space is the
induced representation and, for notational ease, we will denote it as Iρ. The
induced representation was discussed briefly in section 3.1. Specifically, since
π : G Ñ X is a principal H-bundle we can use this and the H-action on V
to create the associated vector bundle G ˆρ V . We will view data as sections
of this associated bundle, which, through corollary 3.2.20 we can work with as

91
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element of the corresponding induced representation.

Maps mapping data to data will then map between induced representations
Φ : Iρin Ñ Iρout . As mentioned was the linear case covered in [29] with some
edge cases clarified in [6] but no attempts have been made for a framework
covering non-linear maps. In Paper IV we introduce such a framework inspired
by [29] and based on the integral map defined below.

Definition 5.1.1. For f P Iρin let Φ : Iρin Ñ Iρout be a map defined as

[Φf ](g) =

ż

G

ω(f, g, g1)dg1, (5.2)

where ω : Iρin ˆGˆG Ñ Vρout satisfies

ω(f, gh, g1) = ρout(h
´1)ω(f, g, g1), @h P H. (5.3)

Remark 5.1.2. This condition on ω is intuitively the same as the condition in
the integral kernel presented in lemma 4.2.6, and is separate from the condition
necessary for the group equivariance of Φ.

Remark 5.1.3. Note that in this case we include the Mackey constraint on ω
as opposed to section 4.2 where we could derive it. For the biprincipal CNN
case we could derive this constraint because the dependence on the feature
map f was clearly stated allowing us to use the linear structure and localised
feature maps f to extract point wise equalities on the kernel behaviour. Here
the dependence on f is a priori unknown and specified by ω which means that
our previous tools do not work. Hence we assume the Mackey property eq. (5.3)
already in the definition.

The map Φ is universal in that any non-linear map can be represented in this
way by some suitable choice of ω.

Theorem 5.1.4 (Theorem 4.5 in Paper IV). Any map λ : Iρ Ñ Iσ between
induced representations can be written as an integral

λ[f ](g) = [Φf ](g) :=

ż

G

ω(f, g, g1)dg1, (5.4)

with a suitable choice of ω P Ω.

There are some freedom in choosing the integration domain as is elaborated on
in remark 5.1.7, however, as it is easier to conceptualise I will continue to use
G as the integration domain
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Intuitively one can view ω(f, g, g1) as computing some information, or message,
based on the input feature map f and the two points g, g1 in the group G which
is then aggregated to g to get the output at g.

Now, the construction of the induced representation yields the natural G-action

(kf)(g) = f(k´1g). (5.5)

Note that this is essentially the same group action as defined in the principal
bundle case with a non-homogeneous base space, eq. (4.23). The main distinc-
tion is that due to the homogeneous structure this G-action moves point across
the base space.

If we want to make eq. (5.2) equivariant with respect to this action, that is

[Φ(kf)](g) = (k[Φf ])(g), (5.6)

we need to, in analogy to lemma 4.2.7, share this ω in some way over G. In
this case the weight sharing appears as

ω(f, g, g1) = ω(k´1f, k´1g, g1), (5.7)

for all k P G. Hence, we can choose k = g which yields

ω(f, g, g1) = ω(g´1f, e, g1). (5.8)

This allows us to define a reduced map

pω(f, g1) := ω(f, e, g1). (5.9)

Finally this results in the following theorem for equivariant non-linear maps:

Theorem 5.1.5 (Non-linear equivariant map). If the map pω : Iρin ˆG Ñ Vout
satisfies

pω(h´1f, g1) = ρout(h
´1)pω(f, g1), @h P H ď G, (5.10)

then the map
[Φf ](g) =

ż

G

pω(g´1f, g1)dg1, (5.11)

is a G-equivariant map between the induced representations Iρin and Iρout .

This formulation is general in the space of equivariant non-linear maps.

Theorem 5.1.6 (Theorem 4.12 in Paper IV). Given any equivariant operator
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λ : Iρ Ñ Iσ there exist a choice of ω̂ such that Φ = λ. This is given by

ω̂(g´1f, g1) = δ(g1)λ[g´1f ](e), (5.12)

where δ(g1) is the Dirac delta distribution.
Remark 5.1.7. Note that nowhere in this setting are we really required to
use G as the integration domain. We can equally well consider the equivariant
map as

[Φf ](g) =

ż

X

pω(g´1f, x)dx, (5.13)

where X is any space instead of the form in remark 5.1.7. With that said,
however, if we set X = G there is a natural change of integration variable
g1 ÞÑ g´1

pg since through this change of coordinates we get

[Φf ](g) =

ż

G

pω(g´1f, g´1
pg)dpg. (5.14)

This form allows for a natural interpretation where g´1
pg encodes the relative

position between where the feature map is centred and the position on which
the pω is conditioned. As we will discuss in section 5.2 this allows for relative
positional bias in, e.g., transformer architectures.
Remark 5.1.8. If the integration domain G is compact and the integral is
normalised, then one does not need to consider the Dirac delta distribution
and simply sets pω(g´1f, g1) = λ[g´1f ](e). With this one achieves

[Φf ](g) =

ż

G

pω(g´1f, g1)dg1 =

ż

G

λ[g´1f ](e)dg1 = λ[g´1f ](e)

ż

G

dg1 = λ[f ](g).

(5.15)

Intuitively, if one sees pω as a some kind of filter bank then the operation
in eq. (5.11) can be viewed as the following process: First, centre the feature
map at g followed by computing the match of this centred feature map and
this filter bank conditioned on the integration variable g1. Note that the filter
bank may in itself depend on the centred feature map g´1f .

5.2 Instances of this framework

From the previous section we have that if

[Φf ](g) =

ż

G

pω(g´1f, g1)dg1, (5.16)
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where pω : Iρin ˆG Ñ Vout satisfies

pω(hg´1f, g1) = ρout(h)pω(g
´1f, g1), @h P H, (5.17)

then Φ will be equivariant to the left regular action of G on the feature maps:

[Φ(kf)](g) = (k[Φf ])(g). (5.18)

This begs the question of what forms pω can take and whether any known
architectures can fit in this framework. Paper IV presents five different known
architectures that emerges from different choices of pω, they are summarised
in fig. 5.1.

When constructing the pω to form the layer one can evaluate the g-centred
feature map g´1f at either the identity or at g1. Initially, it might seem weird
to evaluate at g1 as [g´1f ](g1) = f(gg1) which has no clear interpretation.
However, as mentioned in remark 5.1.7, if we perform the change of variables
g1 ÞÑ g´1

pg in the integral so that

[Φf ](g) =

ż

G

pω(g´1f, g´1
pg)dpg, (5.19)

we get that
f(gg1) = f(gg´1

pg) = f(pg). (5.20)

Hence, with this change of integration variable we see that we can evaluate f at
g or at pg. In addition to evaluating the feature map at different points we can
evaluate any other dependencies in the pω at g1 before the change of integration
variable, or at g´1

pg after. The feature to evaluate any other part of pω at g´1
pg

is what allows relative positional bias, and similar structures to be encoded in
this framework.

From this we see that to construct an pω we have access to the following ingre-
dients:

• the feature map f evaluated at g;

• the feature map f evaluated at integration variable pg;

• any function ψ evaluated at the relative group element g´1
pg.

These ingredients can be used in any combination as long as eq. (5.17) is
satisfied.

In addition to the architectures presented in fig. 5.1 one can easily obtain
certain non-linearities used for equivariant models. An example of this is the
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ω(f, g, g1)

ω̂(g´1f, g1)

κ̂(g1)[g´1f ](g1)

G-CNN (theorem 5.1):

κ
(
g1, [g´1f ](e), [g´1f ](g1)

)
[g´1f ](g1)

Implicit steerable
CNN (theorem 5.3):

Softmax
!

[g´1f ](e)JWJ
QWK [g´1f ](g1)
?
d

)

¨WV [g´1f ](g1)

Self-attention (theorem 5.4):

Softmax
!

[g´1f ](e)JWJ
QWK [g´1f ](g1)
?
d

+ ψ(g1)
)

¨WV [g´1f ](g1)

Relative Position Bias self-
attention (theorem 5.5):

normtα([g´1f ](e), [g´1f ](g1), g1)u

¨WV [g´1f ](g1)

LieTransformer (theorem 5.7):

Convolution based Attention basedGeneral framework

Equivariance

Figure 5.1: Specialisations of the general framework based on the integrand ω̂ :
Iρ ˆ G Ñ Vσ to well-established architectures for different choices of the map ω̂.
The G-CNN case is obtained when ω̂ factorises in a kernel κ̂ : G Ñ Hom(Vρ, Vσ),
which is independent of the input features, and the input feature g´1f : G Ñ Vρ.
The other cases also appears through different factorisations as some type of kernel
contracted with the feature g´1f . However, in all cases the kernel is also dependent
on the input feature g´1f , which separates them from the G-CNN case and makes
them inherently non-linear in f . Figure is figure 2 in Paper IV, all references are to
theorems in Paper IV.

norm based non-linearity for H being an orthogonal group [150, 118]. This non-
linearity scales a vector by a non-linearity acting on the norm of the vector and
is obtained by taking

pω(g´1f, g1) = σ(
›

›[g´1f ](e)
›

›)[g´1f ](e)δ(g1), (5.21)

where σ : R Ñ R is any non-linear function. This works as
›

›ρin(h
´1)[g´1f ](e)

›

› =
›

›[g´1f ](e)
›

› In the case where the integration domain is compact with a nor-
malised measure we can discard the δ(g1) factor as mentioned in remark 5.1.8.

5.3 Takeaway

In this chapter I gave a short introduction to the framework for equivariant non-
linear maps shown in full in Paper IV and showed the ingredients available
when constructing a new equivariant layer.
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This framework also opens up for a future classification of different architectures
depending on the mathematical structure of their layers. If this would result in
anything useful is hard to say but it could be an interesting research endeavour.
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6 Data augmentation vs
Equivariance

This chapter will discuss benefits and drawbacks of data augmentation contra
equivariance in the context of Paper II. Specifically Paper II investigated how
well normal CNNs can perform with data augmentation of SO(3) rotations on
spherical images compared to the spherical CNN by Cohen et al. [28]. For the
semantic segmentation experiments we extended the available layers for the
spherical CNN with a layer projecting a feature map f on the group SO(3) to
a feature map on the sphere.

The main motivation for Paper II was that, at the time we wrote the paper,
it was common to compare manifestly equivariant models to models trained
with data augmentation by comparing four modalities: training on normal or
transformed data, and then testing on normal or transformed data. This is
schematically visualised in table 6.1.

However, these comparisons were almost always made without consideration
of how the models would benefit from the fact that datasets expands during
data augmentation. Hence there were no studies on the limiting behaviours

Table 6.1: Table 1 from [28] where they compare a planar, normal, CNN to the
spherical CNN on the spherical MNIST dataset. The split “X/Y” means trained on
“X” and tested on “Y”. “R” means that the data in question was randomly rotated,
while “NR” stands for non-rotated data. Note that the paper does not go into detail
on the relative sizes of the training datasets, and does not investigate how the per-
formance is affected by the dataset size.

NR/NR R/R NR/R
planar 0.98 0.23 0.11
spherical 0.96 0.95 0.94
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Figure 6.1: Sample from the spherical MNIST dataset used for semantic segmenta-
tion. Left: input data. Right: segmentation mask. Figure is figure 1 from Paper II.

of models under data augmentation. To fill this knowledge gap we wanted to
study if non-equivariant models could reach the performance of the manifestly
equivariant models through more data augmentation.

The tasks considered in Paper II are classification and semantic segmentation
on MNIST. To increase the complexity of the segmentation task multi-digit
version of MNIST was made where each data point includes four digits.

6.1 Equivariance

As mentioned before, a map — or neural network — Nθ : X Ñ Y is equiv-
ariant if it commutes with the group action on the input and output spaces
as

Nθ(gŹX x) = gŹY (Nθ(x)). (6.1)

Formulated differently it means that this diagram commutes

X Y

X Y

Nθ

gŹX gŹY

Nθ

There are several ways one can imbue this property to a network, either through
data augmentation or through by making the network manifestly equivariant
by its construction. Outside of these methods there are several others. To
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mention some, there are loss guided methods, which modifies the loss function
to guide the network to being equivariant and canonicalisation methods [149,
71], which transforms all incoming data to some canonical state, stores the
transformation, operates on the canonicalised input, and then transform the
result back. These other methods are however out of scope to this thesis and
will not be covered here.

6.2 Dataset and augmentation

In Paper II we performed classification and semantic segmentation — per pixel
classification — on MNIST as well as semantic segmentation on a multi-digit
MNIST variant.

To obtain a sample on the sphere with n MNIST digits we perform the follow-
ing process: First we select a resolution of the spherical Driscoll-Healy grid,
visualised in fig. 2.8, and generate the coordinates of the grid points. Then
n digits is randomly placed on a 60 ˆ 60 canvas below the south pole of the
sphere. At this point, if the sample should be rotated, the grid points in the
Driscoll-Healy grid are rotated by a random element in SO(3). After an even-
tual rotation, the grid points in the Driscoll-Healy grid are stereographically
projected onto the 60 ˆ 60 canvas. Finally, after the grid points are projected
onto the canvas, the canvas is sampled bilinearly onto the projected grid points.
This process is visualised in fig. 6.2.

In the case of semantic segmentation the ground truth mask is sampled onto
the projected points by the nearest neighbour. As the classification ground
truth, relevant only for canvases with a single digit, is only a single number
for the entire sample it is kept unmodified for the spherical version. All grid
points on the sphere landing outside the canvas after stereographic projection
are given the background value of 0.

6.2.1 Data augmentation

I will first present a general discussion on data augmentation. Let D be a
labelled dataset consisting of pairs (Xi, Yi)iPI of input data Xi P X and the
corresponding label Yi P Y . If there is a well defined G-action on X and Y the
augmented dataset is usually defined as

pD = t(gŹX Xi, gŹY Yi) | @(Xi, Yi) P D, @g P Gu = GD, (6.2)
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(a) non-rotated projection (b) rotated projection

Figure 6.2: Schematic projection of MNIST digit onto the Driscoll-Healy grid. Rays
extend from the nort pole of the sphere through the grid points on the sphere. Then
the image is sampled where these rays intersect it and this samled value is assigned to
the pixel the ray passed through. Note that in our data pipeline the digit is randomly
placed in a 60 ˆ 60 canvas, which, for simplicity, is not shown here.

and is the G-orbit of the original dataset D. While easy to write down, a full
augmentation of the dataset in this way is only possible for finite groups as
the total dataset size increases by a factor |G|. A network that fully learns an
augmented dataset will be equivariant on pD since

Nθ(gŹX Xi)
1
= gŹY Yi

2
= gŹY (Nθ(Xi)), (6.3)

where 1 follows from the assumption that the network has learnt the trans-
formed data and 2 from that the network learnt the non-transformed data.

If the group G is not finite it is not possible to perform a full augmentation. In
these cases one often performs augmentation live during training where each
pair (Xi, Yi) P D is randomly transformed when loaded.

In Paper II we augmented the samples as they were loaded during training.

6.3 Models

In this section I briefly introduce the different models used in Paper II. For
the exact architecture details I refer the reader to the paper and its appendix.
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6.3.1 Equivariant model: the spherical CNN

In Paper II the equivariant model was a spherical CNN developed by Cohen
et al. [28]; denoted S2CNN. This model works with spherical data modelled as
functions f : S2 Ñ Rk where k is the number of channels. The group action
they consider is [LRf ](x) = f(R´1x) for rotations R P SO(3). That is, they
only work with scalar fields.

To construct a SO(3)-equivariant network the input function is lifted in the
first layer to a function on SO(3) through

[ψ ‹ f ](R) =

ż

S2

k
ÿ

i=1

ψi(R
´1x)fi(x)dx, (6.4)

where ψ : S2 Ñ Rk is a filter assumed to have local support. In this way
[ψ ‹ f ] : SO(3) Ñ R is a function on the entire group SO(3) and so is all
features in subsequent layers. To get multiple channels one simply uses multiple
filters.

The map between two hidden layers, that is mapping functions on SO(3) to
functions on SO(3), is defined as

[ψ ‹ f ](R) =

ż

SO(3)

k
ÿ

i=1

ψi(R
´1Q)fi(Q)dQ, (6.5)

where dQ is the left invariant Haar measure on SO(3).

To compute these maps one transforms the features f and the filters ψ to the
spectral domain by projecting them onto either the basis of spherical harmonics
Y lm(x) — for features and filters on S2 — or onto the basis of Wigner D-matrices
Dl
mn(R) for features on SO(3). Then the correlation can be computed by

simply performing a matrix product between the transformed features pf and
the transformed filter pψ through

zψ ‹ f = pf ¨ pψ :. (6.6)

In order to apply any non-linearity σ : R Ñ R one first needs to transform
the feature map back to the spatial domain, SO(3), by computing

[ψ ‹ f ](R) =
b
ÿ

l=0

(2l + 1)
l
ÿ

m=´l

l
ÿ

n=´l

zψ ‹ f
l

mnD
l
mn(R), (6.7)
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where b is the maximum frequency, called the bandwidth and is related to the
resolution of the spatial grid. After transforming the features back to a function
on SO(3) the non-linearity can be applied point wise. That is, the i:th channel
in output fout is computed fout, i(R) = σ([ψi ‹ f ](R)) for each filter ψi used in
the layer.

Through this method one can concatenate several layers where each layer is
the following sequence. First lift the input feature map on S2 to a function on
SO(3) through eq. (6.4). Then for each hidden layer one transforms the input
function on SO(3) to the spectral domain, perform the convolution as a matrix
product, transform the result back to the spatial domain and apply the non-
linearity. The final transformations back to the spatial domain is only needed
to apply a point wise non-linearity and should be omitted if no non-linearity is
used.

The above scheme describes the workings of the encoder, essentially, all layers
except the final one. To obtain a useful output fout one needs to adapt the
final layer, the decoder, to the task. For the classification task we need SO(3)
invariance which can be achieved by integrating the output of the final hidden
layer ffinal over SO(3)

fout =

ż

SO(3)

ffinal(R)dR. (6.8)

However, for the segmentation task we still need an output feature map on
S2 that maintains equivariance to rotations of the initial feature map. The
spherical CNN by Cohen et al. [28] did not include such a layer as they were
focussed on classification. As such we needed to extend the possible layers with
a layer that mapped feature maps on SO(3) to feature maps on S2.

To obtain this, we note that the sphere S2 is a homogeneous space and can
be viewed as the quotient SO(3)/SO(2). Additionally, let gx P SO(3) be a
representative of x in the coset space SO(3)/SO(2). Then there are two options,
either the output feature map fout : S

2 Ñ Rk is computed as

fout(x) =

ż

SO(3)

κ(g´1gx)ffinal(g)dg, (6.9)

where κ is SO(2) invariant: κ(gh) = κ(g) for all h P SO(2); or using the
projection

fout(x) =

ż

SO(2)

ffinal(gxh)dh, (6.10)

representing taking an average over the subgroup SO(2). The second approach
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Figure 6.3: Projection of feature map from SO(3) to a feature map on S2. This
projection is an extention of the existing S2CNN. Figure modified from Figure 3 in
Paper II.

Figure 6.4: Example of the input data in the Driscoll-Healy grid for a digit projected
onto the grid centre (left) and onto the pole of the sphere (right). Figure is figure 13
from Paper II.

is the one used in Paper II and is explicitly computed

fout(x) =
b
ÿ

l=0

l
ÿ

m=´l

l
ÿ

n=´l

(ffinal)
l
mnY

l
m(x). (6.11)

This final projection is visualised in fig. 6.3.

6.3.2 Non-equivariant model

The non-equivariant model in Paper II is an ordinary CNN. For the CNN to
operate on the spherical images in the Driscoll-Healy grid, we naively treat this
grid as a flat space. As a consequence, digits close to the poles will be heavily
distorted; see fig. 6.4. However, when training on non-rotated images, we
counteract this by placing all digits on the equator, minimising the distortions.
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Table 6.2: Training times for the S2CNN classification model and non-equivariant
CNN model at matched accuracy on rotated spherical images. The spherical CNN
model is trained on non-rotated images whereas the CNN is trained on an augmented
dataset with rotated images. A single Nvidia T4 16GB was used for training. Table
is Table 3 in Paper II.

Model Accuracy Training time
150k S2CNN 97.64% 15h
5M CNN 97.49% 26h

6.4 Comparison of data augmentation and
equivariance

In Paper II we studied the performance of manifestly equivariant models and
models trained with data augmentation on classification and semantic segmen-
tation tasks. In this section I will briefly recount the observed properties and
results.

6.4.1 Classification

For the classification task, we observed that the CNN models could reach the
performance of the manifestly equivariant spherical CNN through data aug-
mentation. The metric in question is overall accuracy on the test set. See the
left panel of fig. 6.5. However, the training time required for the CNN to learn
the augmented data was much longer as is shown in table 6.2.

As the classification task only need the models to output a single class for each
input image, it is enough for the model to find some key global feature and
use this to classify the image. This gives an interpretation of the performance
curves of the left panel of fig. 6.5 as the capability of the models to detect these
key features.

6.4.2 Semantic segmentation

For the semantic segmentation task, however, the CNN model saturated well
below the performance of the manifestly equivariant spherical CNN, even with
data augmentation. See fig. 6.5.

Note that since the background is both a class of its own and a large majority
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Figure 6.5: Non-equivariant performance saturation for segmentation. Left: For
classification of spherical MNIST, the non-equivariant models reach the test accuracy
of the equivariant models for very large amounts of data augmentation. Right: For
semantic segmentation of one-digit spherical MNIST, the non-background mIoU of
the non-equivariant models saturates well below the performance of the equivariant
model even for moderately high amounts of data augmentation. Figure is figure 10
from Paper II.

of the pixels we compute and present the mean IoU for the non-background
classes.

For classification task, to achieve good performance it is enough for the models
to detect some key feature and use this to assign a single class to the image.
This would naively suggest that a similar approach can be taken for single-
digit semantic segmentation: Use some key global feature to detect the class
and then assign this class to each pixel with intensity above some threshold.
This is however not supported when comparing the results between the single-
digit semantic segmentation and the multi-digit semantic segmentation.

In the multi MNIST digit experiments we created blank canvases and added
four random MNIST digits to the canvas, after a random individual rotation for
each digit. Interestingly, each model saturated at a similar performance level
for both single-digit and multi-digit semantic segmentation. Compare the right
panel of fig. 6.5 showing the single-digit semantic segmentation performance
saturation to fig. 6.6 showing the multi-digit version of the same task. If the
models performed the naive approach described in the previous paragraph one
would expect much worse performance on the multi-digit version, but this is not
what we observe. This indicates that the models really rely on local features to
perform the segmentation, and that the equivariant model is better at detecting
these across different orientations.
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Figure 6.6: Segmentation on four digit Spherical MNIST. Performance of equivariant
and non-equivariant models in semantic segmentation on four-digit spherical MNIST
for various amounts of data augmentation. Figure is figure 7 in Paper II.

While the equivariant model is much more data efficient, it is also much slower
in processing the inputs, largely due to custom implementation of operations
in the Fourier domain as well as frequent transitions back and forth between
the spatial and Fourier domain. Detailed times are in table 6.3.

Table 6.3: Runtime and latency throughput for the equivariant spherical CNN
(around 204k parameters) and the non-equivariant CNN (around 200k parameters)
both on an Nvidia T4 16GB GPU performing semantic segmentation. Latency is the
time elapsed for a single forward pass of a batch of images through the model on the
GPU, while throughput is the number of samples per second for the given batch size.
For both cases, to speed up training and throughput, we chose the largest batch size
that fit into the GPU memory. This table is a merge of Table 1 and 2 from Paper
II.

Model Batch size Latency (ms) Throughput (N/s)

S2CNN 1 111 ˘ 0.6 9.0 ˘ 0.04
7 479 ˘ 2.2 14.6 ˘ 0.07

CNN 1 5.93 ˘ 0.24 169 ˘ 5.8
60 87.98 ˘ 0.17 682 ˘ 1.3
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6.5 Takeaway

The main takeaway from Paper II is that one should carefully consider the
parameters relevant for your task at hand. Assuming there is some relevant
symmetry present in the data or task, consider using an equivariant model if, in
rough order of importance: the group action is “complicated” when viewed in
your data representation, for example the spherical rotations are complicated
when viewed from the plane, see fig. 6.4; you require that the group transfor-
mations are respected as much a possible; you do not have access to a lot of
data; or your training time is limited.

On the other hand, you should consider a non-equivariant model if, in rough
order of importance: the throughput is important, e.g., using a model in time-
critical places like autonomous vehicles; the group action is simple for the model
to learn without enforcing it; or you have access to a lot of data and training
resources. Of course the points regarding the latency and throughput of the
model depends heavily on the implementation, and equivariant models which
rely on other previously optimised procedures, like convolutions, will suffer less
— or not at all — from the additional structure required for equivariance.
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7 HEAL-SWIN: a spherical
vision transformer

This chapter will discuss elements of Paper III, specifically focussing on the
motivation behind the HEAL-SWIN model and its construction. For the spe-
cific architecture and experimental results I refer the reader to Paper III
although I will present a short summary of experiments we performed.

7.1 Problem: Images on curved space

There are many tasks where one could make use of machine learning models
that are inherently spherical. Some examples include weather prediction [82,
91, 81] and spherical images. Spherical images are the focus of this chapter and
appear in many places: any type of localisation using omnidirectional images
[166, 162], and fisheye images which is the focus of Paper III.

A fisheye image, an example of which is shown in fig. 7.2, is projected on the
camera sensor by a lens that is symmetrical with respect to rotations about the
optical central axis. Due to this construction, and a large field of view, fisheye
images are heavily distorted. One way around this distortions is to map the
image to the sphere. That is, assign each pixel to the point on the unit sphere
that corresponds to the incoming light ray for that pixel. Through this one
obtains an image on the sphere.

Specifically, a fisheye camera is determined by its mapping function, f . This
map sends an incoming light ray with direction (θ, φ), where θ is the zenithal
angle with respect to the optical centre line of the lens and φ is the azimuthal
angle, to a point (r, φ) on the camera sensor where r = f(θ). In this way, the
mapping function provides a one-to-one map between pixels in the image and

113
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r
φ

Figure 7.1: Schematic figure of cam-
era sensor where r is the distance from
a pixel, marked with a grey dot, to the
optical centre line, marked with a black
dot, and φ is the azimuthal angle.

Figure 7.2: Example image from the
WoodScape dataset [121]. Note the that
the distortions increase with the distance
to the image centre, which here is the
optical axis.

directions of incoming light rays. Figure 7.1 shows a schematic representation
of the camera sensor, and fig. 7.3 shows a cross section of a fisheye camera
visualising a simplified light path for the incoming light rays.

Since the sphere is a curved surface and the plane is flat there will always
be distortions if one represents spherical data on a flat space, e.g. the plane.
Unfortunately most developed methods work naturally with flat data and needs
to be modified to work on spherical data.
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θ

r

Figure 7.3: Schematic of a fisheye camera with the black rectangle at the bottom
representing the camera sensor. The dashed line represents the optical axis and the
lens is symmetric to rotations around this axis. The angle θ is the angle of an incoming
light ray relative to the optical axis and r = f(θ) is the distance on the camera sensor
between the optical axis and the pixel hit by the light ray with angle θ, given by the
mapping function f . Note the compression of the incoming light rays at the edge of
the camera sensor.

7.2 Short introduction to vision transformers

Generally people view the start of the deep learning revolution as when the
deep machine learning model AlexNet [80] won the ImageNet 2012 challenge;
beating the runner up by 10.8 percentage points [43]. The ImageNet challenge
consists of classifying the content of an image and AlexNet used predominantly
convolutional layers. Since then, networks using mostly convolutional layers
have been the go-to for image based tasks.

Although convolutional neural networks have performed well for vision tasks,
each convolutional layer acts only locally as the computation of a new feature
at a given point only depends on the nearby input features. This means that
CNNs can have issues capturing long range interactions [156]. Stacking many
layers means that the receptive field increases, but so does also the influx
of information from other features making it harder to fine specific relations
between distant pixels.

To overcome this limitation one can use the self-attention layer which can
capture relations over any distance. Roughly speaking this happens as the
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self-attention mechanism [10, 153] constructs a so-called attention matrix of
size nˆ n, where n is the number of pixels. The value of the attention matrix
Aij at (i, j) encodes the degree the attention mechanism “believes” that pixel
i is “connected” to pixel j. In this way the attention mechanism can capture
relations over any range.

This aside, the attention mechanism has several downsides. One downside
is that attention is computationally heavy: the number of operations scales
quadratically with respect to the input length [153]. To examplify why this is
downside, let us compare input sizes for text and images. When a transformer
works with texts, the input text if first split into so-called tokens and these
tokens are then fed to the attention mechanism. How a text is split into tokens
varies between languages, but for English OpenAI states a rule of thumb that
one token on average corresponds to 0.75 of a word [161]. OpenAI claims that
some of their models can work with up to 128 000 tokens jointly over input
and output. This would correspond to around 90 000 words, which is about
a shorter average book. For most use cases this context length is totally fine;
for images this is not nearly enough since on the image side, at present time,
a low resolution image has at least 12 000 000 pixels. If each pixel were to be
considered as a token this would be over 90 times more than the current limit
of OpenAI’s models. Hence, to actually allow transformers to work efficiently
on images one needs to deal with this scaling issue.

In 2020 the Vision transformer (ViT) was introduced. The ViT solved the
scaling issue by first batching patches of nearby pixels together and embedding
these patches as the tokens. This reduced the computational requirements
drastically.

Another downside of transformers for images is that transformers have none
of the inductive biases that the convolutional networks have. E.g., CNNs are
translationally equivariant by construction while transformers do not satisfy
this at all. To counteract this transformers generally need to train on a lot more
data. However, the SWIN (Shifted WINdow) transformer [94] was released in
2021 and used smaller attention windows, hence reducing computational costs,
that are reused at shifted locations. This shifting means that weights going
into the computation of the attention matrix is shared over different areas of
the input image, akin to how the kernel in a convolutional layer is shared over
all points. Additionally, in addition to the shifting, SWIN performs patch
merging, similar to pooling used in CNNs, allowing to construct hierarchical
features as well as forming long range connections over the image which would
otherwise be difficult due to the local attention windows.
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(a) nside = 2 (b) nside = 4 (c) nside = 8

Figure 7.4: The HEALPix grid at different nside values. This also illustrates the
hierarchical construction of the HEALPix grid where the grid for the next nside value
is obtained through a subdivision of the previous grid. The red outline shows which
pixels are subdivided from the same parent pixel in the previous stage. Note that
nside = 2 is the first subdivision of the 12 base pixels, here shaded in different shades
of grey.

7.3 HEAL-SWIN

In this section I present the underlying parts of the HEAL-SWIN model put
forth in Paper III leading up to introducing the full HEAL-SWIN model at
the end of this section.

Roughly speaking the HEAL-SWIN model joins the SWIN transformer with
the HEALPix grid.

7.3.1 The HEALPix grid

The HEAL part of the HEAL-SWIN model represent the use of the HEALPix
grid.

This grid was developed by astrophysicists in the late 1990’s [54] and the
HEALPix name is an abbreviation of H ierarchical Equal Area isoLatitude
Pixelation. As the “hierarchical” part in the name suggests the HEALPix grid
is constructed recursively by repeated subdivision of 12 curvilinear quadrilat-
eral base pixels. Often the resolution of a HEALPix grid is given in terms
of the nside parameter where nside = 2k and k = 0, 1, . . . is the number of
subdivisions. This subdivision process is shown in fig. 7.4. The resolution of
a HEALPix grid, if all 12 base pixels are used, is then only dependent of the
subdivision order k, where k = 0, 1 . . . , and is Rk = 12 ¨ n2side = 12 ¨ 22k
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θ

π/2

´π/2

φ 2π0

Figure 7.5: The HEALPix grid with nside = 4 and a total resolution of 192 pixels.
The 12 base pixels are outlined in red and on the right shaded in different shades of
grey. Left panel: The HEALPix grid viewed in the normal angular coordinates on the
sphere: zenithal and azimuthal angles. Note that in this view the pixels close to the
poles (θ = π/2 or ´π/2) appear to take more space, but this is due to the inherent
distortions in this coordinate system. Right panel: The HEALPix grid viewed on the
sphere. Note that the polar pixels are the same size as any other pixel.

Importantly, each pixel in the HEALPix grid has the same area. This means
that every part of the sphere gets equal pixel density and the spatial resolution
is uniform. A uniform resolution is highly relevant when one want to resolve
small details that might, or will, appear at any position on the sphere, where
the Driscoll-Healy grid is more heavily sampled at the poles. Compare fig. 7.5
and fig. 7.6.

Additionally, an important point is that the HEALPix grid cannot easily be
stored in any 2-dimensional array. Instead the HEALPix grid is stored in a
1-dimensional index array and use one of two possible representations to map
from this index array to coordinates on the sphere: ring or nested. In the ring
representation, fig. 7.7a, the pixels are numbered starting at the north pole and
then following the iso-latitude rings, one at a time, down to the south pole.
The nested representation on the other hand, fig. 7.7b, utilises the hierarchical
structure of the HEALPix grid to number the pixels in a tree like structure
where. This one-dimensional nature of how the HEALPix grid is stored means
that to adapt models designed for 2-dimensional data one must modify them
appropriately. Generally this is done with a mapping which extracts spatially
nearby pixels from the index array.

Finally, another advantage that the HEALPix grid has over the Driscoll-Healy
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θ

π/2

´π/2

φ 2π0

Figure 7.6: Driscoll-Healy with a resolution of 200 pixels. Note that, as opposed
to the HEALPix grid in fig. 7.5, the pixels look regular and uniform in the angular
view (left panel) while it is clear that the size of the pixels varies with the latitude
when viewed on the sphere (right). As a consequence the poles are oversampled as
compared to the equator making a uniform spatial resolution impossible.

(a) Ring representation (b) Nested representation

Figure 7.7: Different representations of the HEALPix grid, figure taken from the
HEALPix documentation . The colour each pixel represents its index value in the
different representations. For an explicit example of the indexing in the nested rep-
resentation, see fig. 7.9. Images modified from [168].
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Projection

Figure 7.8: Projection of a (synthetic) fisheye image, left, to the sphere, right.
Image from the SynWoodScape dataset [137]. Note that the HEALPix grid on the
right only uses 8 out of the 12 base pixels.

grid, apart from the equal area sampling, is that it is easy to use only a part of
the grid by extracting specific base pixels. To extract base pixel i, zero indexed,
in the nested scheme this is simply done by retrieving the indices at positions
n2side ¨ i to n2side ¨ (i+1)´ 1. Of course one would ideally rotate the grid so that
the kept base pixels as well as possible with the data. This is used in some of
the experiments in Paper III in which we use the first 8 base pixels.

To sample an fisheye image onto the HEALPix grid one first maps each pixel,
in polar coordinates (r, φ), to the angular coordinates of the incoming light
ray, (θ, φ), using the mapping function θ = f(r). Then the angular positions
of the HEALPix sampling points are calculated and the spherical image is
resampled onto these points. For RGB data bilinear resampling is reasonable,
but for dealing with distance data or semantic segmentation labels using nearest
neighbour is better. An example of this is shown in fig. 7.8.

7.3.2 The HEAL-SWIN transformer

The HEAL-SWIN transformer is the modification of the SWIN transformer
to work on images (or other data) in the HEALPix grid. This means that
the key features of the SWIN transformer must be adapted to work on the
1-dimensional index array of the HEALPix grid. Specifically, three elements
needs to be adapted: the patch merging, the attention windows, and the shift-
ing of the attention windows.
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Figure 7.9: Merging and subdivision explicit in the nested grid index scheme. Note
that through this scheme one is guaranteed that all pixels sharing the integer part of
i/22k, where i is the pixel index and k ě 1, is guaranteed to form a square.

Initially nearby pixels in the input high-resolution image on the HEALPix grid
is merged into patches — visualised in fig. 7.9 — similar to the ViT, to reduce
the overall computational complexity. This merging utilises the nested repre-
sentation of the HEALPix grid since in this representation pixels are grouped
by the parent pixel. Specifically, through this one gets that all pixels tpiu
agreeing on

Y pi
22k

]

, k ě 1, (7.1)

where pi is the pixel index, are guaranteed to form a square in the HEALPix
grid with side length 2k.

The same procedure is used to group these patches into attention windows,
specifically, a window is assumed to consist of a number of pixels equal to a
power of 4 since this is guaranteed to yield square windows by eq. (7.1). This
ensures that the windows align well with the HEALPix grid. After the pixels
for a window are gathered attention is performed over these pixels. See fig. 7.10.

Moreover, the patch merging reappear at later stages in the model to again
lower the spatial resolution in order to extract more semantic information and
spatial relations between pixels further away in the input image. This process
is visualised in fig. 7.11 and in fig. 7.9 with explicit indexing in the nested
representation.
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Figure 7.10: Attention windows of size 4, outlined in red, in a HEALPix grid with
nside = 4.

Figure 7.11: Patch merging in HEAL-SWIN (top row) and SWIN (bottom row)
from a higher resolution on the left to a lower on the right. In each step the patches
in a red outlined window are merged to form the patches in the next step on the right.
Note the hierarchical similarities between the patch merging in the HEAL-SWIN to
the one in the SWIN.
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Finally, to actually share the attention weights over different parts of the image
we need to shift the windows. Or equivalently, as we do in the HEAL-SWIN,
keep the windows fixed and shift the data. This takes the form of an map
S : I Ñ I where I is the HEALPix index array.

There are two natural shifting strategies connected to the two different repre-
sentations of the HEALPix array: spiral shifting for the ring representation or
grid shifting for the nested representation. Both shifting schemes are visualised
in fig. 7.13. The spiral shifting scheme, fig. 7.13a, is easily implemented as a roll
on the index array. This induces what looks like a spiral motion in the image,
especially near the poles where the same movement in the index array causes
a larger angular movement due to the shorter iso-latitude line compared to
close to the equator. The grid shifting on the nested representation, fig. 7.13b,
is the closer analogue to the shifting in SWIN which is performed by shifting
along the two axes of the grid. In HEAL-SWIN this is a bit more intricate and
visualised in fig. 7.12.

In both shifting schemes some areas are shifted “out of the HEALPix grid”,
e.g., when rolling the index array in the ring representation pixels shifted out
at the end of the array. Additionally “empty space” is created at the other end.
To keep all data the pixels that are shifted out are copied into the areas lacking
data. Doing so naively would allow the attention in the affected windows create
connections immediately over the edge of the image essentially changing the
topology of the image. To prevent this the copied pixels are masked out in the
attention and locality is preserved. The copied, and hence masked out areas,
are highlighted in yellow in fig. 7.13.
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Figure 7.12: Grid shifting scheme for window size 16: The windows before the shift
are framed in red and the patches are numbered in the nested scheme. After a shift
by half a window size, the patches are divided into the windows framed in blue, so
that e.g. patch 0 becomes patch 12 after the shift. The hashed regions are masked in
the attention layer. The patches hashed horizontally correspond to the pixels marked
in yellow in Figure 7.13 (left). They are filled with patches hashed vertically which
correspond to the pixels lost in the centre of Figure 7.13 (left). Figure is figure 3 in
Paper III.

(a) Spiral shifting (b) Grid shifting

Figure 7.13: Different shifting configurations for the HEAL-SWIN model. Note
that for these figures only 8 of the 12 base pixels are used, the unused base pixels
are filled with grey for this visualisation. The yellow highlighted regions are regions
that needs to be filled with the data that is shifted out of the grid. Specifically, in
the grid shifting scheme (right) pixels are moved towards the centre, and as they are
moved into the centre they are copied into the yellow areas. Note that the shifting
is greatly exaggerated here to make it easily visually noticeable. Figure is figure 4 in
Paper III.
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7.4 Experiments

In Paper III we performed several experiments using the normal SWIN and
our new HEAL-SWIN. Specifically we performed semantic segmentation — per
pixel classification task — depth estimation and classification. The semantic
segmentation experiments were done on three different datasets: WoodScape
[121], SynWoodScape [137], and the Stanford 2D3D-S dataset [5]. The depth
estimation experiment was only performed on the SynWoodScape dataset, and
the classification was performed on spherical MNIST — see chapter 6 for more
information. Note that images from the two WoodScape datasets were pro-
jected on only 8/12 of the base pixels to minimise tracking unnecessary back-
ground information. The Stanford 2D3D-S dataset, however, is fully omnidi-
rectional, except for the polar regions of the RGB images where data is missing.

To compare the models for the semantic segmentation tasks the SWIN output
was projected to the HEALPix before computing the per class mIoU. The
HEALPix grid is well-suited for this for two main reasons. First, it is the native
domain for fisheye imagery. Second, because the direction of each incoming
light ray is inherently known, the representation is ideal for downstream tasks
or for building an internal world model. For an overview of the results on the
semantic segmentation on SynWoodScape, see fig. 7.15 with more details in
Paper III.

The depth estimation experiment is a bit different as the model was tasked
for an RGB image input to estimate, for each pixel, the distance along the
corresponding light ray to its intersection with some object. The ground truth
for this consisted of greyscale images where the pixel value corresponded to
the ground truth distance. For this experiment we initially tried to perform
the same method as for the semantic segmentation, that is resample the SWIN
prediction to the HEALPix grid and then perform a distance measurement in
that grid. Unfortunately this approach yielded large errors, primarily originat-
ing from high contrast edges which are very sensitive for how they are sampled.
To circumvent this issue we decided to compare the models outputs and the
ground truths as point clouds in 3-dimensional space.

To create these point clouds we utilise that we know the light ray direction
for each pixel. Then we create a point in space along that ray at the specified
distance — either specified by the ground truth or the prediction. See fig. 7.14.
This method avoids the resampling errors that would otherwise affect the pre-
dicted distances.

The predicted point cloud is then compared to the ground truth point cloud
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Figure 7.14: Depth-map ground truth (left) and corresponding point cloud (right).
The red arrow indicates the orientation of the camera. Figure is figure 7 in Paper
III.

by computing the so-called Chamfer distance:

CD(Ppred, Pgt) =
1

|Ppred|

ÿ

pPPpred

min
p1PPgt

d(p, p1)2 +
1

|Pgt|

ÿ

pPPgt

min
p1PPpred

d(p, p1)2 .

(7.2)
For an overview of the results on the depth estimation, see fig. 7.15 with more
details in Paper III.
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Figure 7.15: Chamfer distance (lower is better) and mIoU (higher is better) for
HEAL-SWIN (HS) and SWIN (S). The dataset used for both of these was SynWood-
Scape. Figure is figure 2 in Paper III.
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7.5 Takeaway

The takeaway from this paper and project would simply be to carefully think on
how you represent your data. Especially, if there are any underlying geometrical
inductive biases that you would like to include, think on if there are any ways
to represent the data that natively takes this geometry into account. It is easer
to let the data representation, in this case the grid, work the geometry for
you instead of imposing geometric constraints on a grid that would otherwise
destroy that geometry.
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8 Conclusions and outlook

In this chapter I present some conclusions from this thesis as well as some paths
for future research.

8.1 Conclusions

Many different problems have some geometry or group symmetry present and
utilising this as an inductive bias can be very beneficial. On the applied side the
benefits can include data efficiency and reduced training time for an equivalent
performance — see Paper II and chapter 6— or utilising a grid more suitable
to the underlying geometry resulting in general increased performance — see
Paper III and chapter 7.

While one should always be aware of the geometrical inductive biases that can
be implemented for a task, using them blindly is not generally advisable. Often
equivariant models can have additional overhead which can be problematic if
the task the model is used for is time-critical. Additionally, if the group action
is easy for the model to learn, which depends on how the data is represented,
then using data augmentation — or other methods, like guiding the learning
through a modification of the loss function — might be enough and allow for
larger expressiveness. Hence one should always consider all parameters of the
task when deciding on what type of model to be used.

On the mathematical side this thesis presents a close knit approach to equivari-
ance in CNNs based on differential geometry — see Paper I and chapter 4 —
and a novel framework for equivariant non-linear maps between induced repre-
sentations on homogeneous spaces — see Paper IV and chapter 5. This shows
that it is possible to approach equivariance in a systematic way compatible with
many different architectures.
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8.2 Outlook

There are a bunch of relevant threads from Paper IV. The most immediate is
to use this framework to construct new manifestly equivariant layers. Of course,
designing new layers could be interesting from a mathematical point of view
but for this to be relevant in applications these need also be made efficient. To
do this would probably require deep knowledge of CUDA or similar frameworks
for coding efficient code on GPUs.

Another track from Paper IV is to examine the possibility of feature maps
f not just defined on G but with domain G ˆ G. Such maps would natively
encode features connecting different group elements and could probably be used
to model edge features. From the mathematical side having the domain of the
features be G ˆ G makes sense from the lens of functional analysis. See the
appendix of Paper IV for more details on the functional analysis version of
the framework in Paper IV. Additionally, the functional analysis approach to
this problem could be elaborated and expanded, there is definitely more to say
on that side.

On the applied side some research avenues are: Is it possible to use the geo-
metric structure of the HEALPix grid to implement equivariance? On the data
side I would personally be interested in a study in data efficiency for equiv-
ariant transformers, and probing the limits of this, along the lines of Paper
II. Additionally, the same type of project would be interesting for transform-
ers that natively deal with data on curved surfaces: how much data is needed
by different approaches to data on curved surfaces in order to reach the same
performance, if that is even possible?
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