

Diffeomorphic Explanations with Normalizing Flows

Ann-Kathrin Dombrowski* , Jan E. Gerken* , Pan Kessel

^{*}equal contribution

original x counterfactual x'

heatmap δx

Outline

1. [Introduction](#page-3-0)

- 2. [Paper Idea](#page-7-0)
- 3. [Theoretical Analysis](#page-12-0)
- 4. [Experiments](#page-18-0)
- 5. [Conclusion](#page-22-0)

Normalizing Flows

Explanations for classifiers

Finding counterfactuals

Gradient ascent g

Finding counterfactuals *on* the data manifold

Adversarial examples lie off the data manifold

original x not blonde ($p \approx 0.99$)

adversarial example x' blonde ($p \approx 0.99$)

heatmap δx

Finding counterfactuals *on* the datamanifold

original x not blonde ($p \approx 0.99$)

counterfactual x' blonde ($p \approx 0.99$) heatmap δx

Method

- choose sample x
- find representation in base space $z=g^{-1}(x)$
- update z with gradient $\frac{\partial f_{\bm{k}}(g(z))}{\partial z}$ until target class has desired probability

Intuition

gradient ascent in Z

Gradient ascent in base space

Gradient ascent in X for class k of the classifier f with learning rate λ :

$$
x^{(t+1)} = x^{(t)} + \lambda \frac{\partial f_k}{\partial x}(x^{(t)})
$$

Theorem *Gradient ascent in the base space* Z *is given by*

$$
x^{(t+1)} = x^{(t)} + \lambda \gamma^{-1}(\boldsymbol{x}^{(t)}) \frac{\partial f_k}{\partial x}(x^{(t)}) + \mathcal{O}(\lambda^2)
$$

where $\gamma^{-1}(x) = \bigl(\frac{\partial g}{\partial x}\bigr)$ ∂z ∂g $\frac{\partial g}{\partial z}^T)(g^{-1}(x))$ is the inverse of the induced metric on X *from* Z *under the flow* g*.*

Coordinates on X

Approximate the data manifold by

$$
S = \mathcal{D} \times B_{\delta_1} \times \cdots \times B_{\delta_{N-n}}
$$

and use Gaussian normal coordinates

The induced metric in normal coordinates

Theorem *In Gaussian normal coordinates,* γ^{-1} *is given by*

$$
\gamma^{-1} = \begin{pmatrix} \gamma_{\mathcal{D}}^{-1} & & & \\ & \gamma_{B_{\delta_1}}^{-1} & & \\ & & \ddots & \\ & & & \gamma_{B_{\delta_{N-n}}}^{-1} \end{pmatrix}
$$

and, for well-trained flows, γ_{Bs}^{-1} $\bar{B}_{\delta_i}^{-1} \to 0$ for $\delta_i \to 0$.

⇒ *For gradient ascent in* Z*, the learning rate in* x[⊥] *directions is scaled by a vanishing factor. Therefore, we stay on the data manifold.*

Sketch of proof

• For well-trained flows q, almost all probability mass is concentrated in $S = \mathcal{D} \times B_{\delta_1} \times \cdots \times B_{\delta_{N-1}}$

$$
1 - \epsilon < \int_{S} q_X(x) \, \mathrm{d}x = \int_{S} \sqrt{\det|\gamma|} \, q_Z(g^{-1}(x)) \, \mathrm{d}x
$$

- When $\delta_i \rightarrow 0$, the integration domain shrinks to zero, but the value of the integral is bounded from below
- $\bullet\,$ Hence, the metric $\gamma_{B_{\delta_i}}$ has to diverge, i.e. $\gamma_{B_{\delta_i}}^{-1}$ $\overline{B^1_{\delta_i}} \to 0.$

Tangent space from induced metric

- Perform singular value decomposition of the Jacobian $\frac{\partial g}{\partial z} = U \, \Sigma \, V$
- Rewrite the inverse induced metric as

$$
\gamma^{-1} = \frac{\partial g}{\partial z} \frac{\partial g}{\partial z}^T = U \Sigma^2 U^T
$$

- For n dimensional data manifold: n large singular values
- Corresponding left-singular vectors span the tangent space of the data manifold

Tangent space from induced metric

Experiments with MNIST

- task: $4 \rightarrow 9$
- Flow: RealNVP
- Classifier: CNN with 10 classes (test acc: 99%)

Experiments with CelebA

- task: *not blonde* → *blonde*
- Flow: Glow
- Classifier: Binary CNN trained on *blonde/not blonde* attribute (test acc: 94%)

Experiments with CheXpert

- task: *healthy* → *cardiomegaly*
- Flow: Glow
- Classifier: Binary CNN trained on *cardiomegaly/healthy* attribute (test acc: 86%)

Quantitative Evaluation

Conclusion

Summary

- Counterfactual examples provide explanations for classifiers
- Gradient ascent in the input space of the classifier leads off the data manifold
- Gradient ascent in the base space of the flow leads to counterfactuals on the data manifold
- Derived theoretically and shown experimentally

Open questions

- Dependence on flow architecture
- Robustness of counterfactuals against manipulations