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Explanations for classifiers

classifier ~ prediction: explanation
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Finding counterfactuals

class: blonde
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Gradient ascent

class: blonde
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Finding counterfactuals on the data manifold
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Adversarial examples lie off the data manifold

original = adversarial example z’ heatmap 6z
not blonde (p =~ 0.99) blonde (p =~ 0.99)

Diffeomorphic Explanations | slide 6



Finding counterfactuals on the datamanifold

original = counterfactual =’ heatmap 6z
not blonde (p =~ 0.99) blonde (p = 0.99)
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Method

LN prediction

z2~qz T~ gx

e choose sample z
* find representation in base space z = g~ !(x)

* update > with gradient 2:9) yntj| target class has desired probability
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Intuition

gradient ascent in Z gradient ascent in X
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Gradient ascent in base space

Gradient ascent in X for class k of the classifier f with learning rate \:

O fk

(t+1) A (t)
x by 8x( )

Theorem
Gradient ascent in the base space Z is given by

o = 200y (20) D) 4 0(2)

where y!(z) = (%’%T)(g_l(x)) is the inverse of the induced metric on X
from Z under the flow g.

Diffeomorphic Explanations | slide 10



Coordinates on X
Approximate the data manifold by

S =D x Bs, X+ %X Bs,_,

and use Gaussian normal coordinates
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The induced metric in normal coordinates

Theorem
In Gaussian normal coordinates, v~ is given by

and, for well-trained flows, 7,53 — 0 for o; — 0.

= For gradient ascent in Z, the learning rate in x, directions is scaled by
a vanishing factor. Therefore, we stay on the data manifold.
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Sketch of proof

e For well-trained flows g, almost all probability mass is concentrated in
S=Dx Bs; Xx---x Bs,_

- c< / gx(z) dz = / Vet Pl az(g™ @) da

e When ¢; — 0, the integration domain shrinks to zero, but the value of
the integral is bounded from below

1
5

* Hence, the metric 5, has to diverge, i.e. 75 — 0.
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Tangent space from induced metric

Perform singular value decomposition of the Jacobian % =UXV

Rewrite the inverse induced metric as

—1__69§QT

=22 =Uux?yu’
0z 0z

For n dimensional data manifold: n large singular values

Corresponding left-singular vectors span the tangent space of the data
manifold
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Tangent space from induced metric
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Experiments with MNIST

T x ox T

e task: 4 — 9
e Flow: RealNVP

e Classifier: CNN with 10 classes
(test acc: 99%)
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Experiments with CelebA

e BB gy
t}f‘:. - " : ":’3\ | ; _,Is:?\ -
ox T z’ oz x '

¢ task: not blonde — blonde
e Flow: Glow

e Classifier: Binary CNN trained on blonde/not blonde attribute
(test acc: 94%)

N
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Experiments with CheXpert

Z

n
n

gy W ﬂ
x ‘ :c’> ox x x’ | 5z
e task: healthy — cardiomegaly
* Flow: Glow

e Classifier: Binary CNN trained on cardiomegaly/healthy attribute
(test acc: 86%)
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Quantitative Evaluation

B original images B gradient ascent in X B gradient ascent in Z
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Conclusion
Summary
e Counterfactual examples provide explanations for classifiers

e Gradient ascent in the input space of the classifier leads off the data
manifold

e Gradient ascent in the base space of the flow leads to counterfactuals
on the data manifold

 Derived theoretically and shown experimentally
Open questions

» Dependence on flow architecture

e Robustness of counterfactuals against manipulations
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