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Normalizing Flows

base distribution samples from base
distribution

flow←−−−→
bijective

learned distribution samples from learned
distribution
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Explanations for classifiers

image

classifier−−−−→
prediction:

dog
explanation
−−−−−−→

explanation
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Finding counterfactuals

decision boundary

class: blonde

class: non blonde

data point
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Gradient ascent g
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gradient
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Finding counterfactuals on the data manifold

decision boundary

class: blonde

class: non blonde

counterfactual

adversarial example
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anifold

data point

Di�eomorphic Explanations | slide 5



Adversarial examples lie o� the data manifold

original x
not blonde (p ≈ 0.99)

adversarial example x′
blonde (p ≈ 0.99)

heatmap δx
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Finding counterfactuals on the datamanifold

original x
not blonde (p ≈ 0.99)

counterfactual x′
blonde (p ≈ 0.99)

heatmap δx
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Method

z ∼ qZ

x = g(z)←−−−−−→
z = g−1(x)

x ∼ qX

f(x)−−→ prediction

• choose sample x
• find representation in base space z = g−1(x)

• update z with gradient ∂fk(g(z))
∂z

until target class has desired probability
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Intuition

gradient ascent in Z

x = g(z)←−−−−−→
z = g−1(x)

gradient ascent in X
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Gradient ascent in base space
Gradient ascent in X for class k of the classifier f with learning rate λ:

x(t+1) = x(t) + λ
∂fk
∂x

(x(t))

Theorem
Gradient ascent in the base space Z is given by

x(t+1) = x(t)+λ γ−1(x(t))
∂fk
∂x

(x(t)) +O(λ2)

where γ−1(x) =
(
∂g
∂z

∂g
∂z

T )
(g−1(x)) is the inverse of the induced metric on X

from Z under the flow g.
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Coordinates on X
Approximate the data manifold by

S = D ×Bδ1 × · · · ×BδN−n

and use Gaussian normal coordinates

S

D
x‖

x⊥

Bδ

X
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The induced metric in normal coordinates
Theorem
In Gaussian normal coordinates, γ−1 is given by

γ−1 =


γ−1D

γ−1Bδ1
. . .

γ−1BδN−n


and, for well-trained flows, γ−1Bδi → 0 for δi → 0.

⇒ For gradient ascent in Z, the learning rate in x⊥ directions is scaled by
a vanishing factor. Therefore, we stay on the data manifold.
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Sketch of proof

• For well-trained flows g, almost all probability mass is concentrated in
S = D ×Bδ1 × · · · ×BδN−n

1− ε <
∫
S

qX(x) dx =

∫
S

√
det |γ| qZ(g−1(x)) dx

• When δi → 0, the integration domain shrinks to zero, but the value of
the integral is bounded from below

• Hence, the metric γBδi has to diverge, i.e. γ−1Bδi → 0.
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Tangent space from induced metric

• Perform singular value decomposition of the Jacobian ∂g
∂z

= U ΣV

• Rewrite the inverse induced metric as

γ−1 =
∂g

∂z

∂g

∂z

T

= U Σ2 UT

• For n dimensional data manifold: n large singular values

• Corresponding left-singular vectors span the tangent space of the data
manifold
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Tangent space from induced metric
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Experiments with MNIST

• task: 4→ 9
• Flow: RealNVP
• Classifier: CNN with 10 classes

(test acc: 99%)
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Experiments with CelebA

• task: not blonde→ blonde
• Flow: Glow
• Classifier: Binary CNN trained on blonde/not blonde attribute

(test acc: 94%)
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Experiments with CheXpert

• task: healthy→ cardiomegaly
• Flow: Glow
• Classifier: Binary CNN trained on cardiomegaly/healthy attribute

(test acc: 86%)
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Quantitative Evaluation
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Conclusion
Summary
• Counterfactual examples provide explanations for classifiers
• Gradient ascent in the input space of the classifier leads o� the data

manifold
• Gradient ascent in the base space of the flow leads to counterfactuals

on the data manifold
• Derived theoretically and shown experimentally

Open questions
• Dependence on flow architecture
• Robustness of counterfactuals against manipulations
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