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Counterfactual explanations

> Counterfactual of a sample: Data point close to original but with different
classification

> Difference between original and counterfactual reveals features which led to
classification

> Example from CelebA dataset, classified as not-blonde:

original x counterfactual x’ [x — x|



Adversarial examples

> For a classifier f : X — [0, 1]€, can generate adversarial example in class k by
computing

argmax,, fi(x)
approximately by gradient ascent

L) 0 4 fk( ()

> Problem: The adversarial example does not lie on the data manifold, so is not a
counterfactual

original x adversarial example x’ [x —x
blonde p = 0.01 blonde p =~ 0.99



Normalizing flows

v

Generative model ¢ which maps base space Z to data space X bijectively

v

Probability distribution gz in Z is simple, e.g. uniform or normal

> Probability distribution gx in X is given by change of variables
Jz
_ -1
qx(x) = 4z(g7"(x)) |det 5

v

g is realized as a neural network with bijective, easily invertible building blocks

base space Z data space X



Counterfactuals from normalizing flows

> Generate counterfactual by performing gradient ascent in base space of
normalizing flow:

41 _ 0 A@(M)

> In this way, stay on data manifold:

base space Z data space X



Gradient ascent in base space

> Gradient ascent in Z for class k of the classifier f with learning rate A:

L) _ () 4 /\a(f g)k( (t))
> Using change-of-variable under the flow:

Theorem

Gradient ascent in the base space Z is given by

2D = x B3 y~1(x®)) %(M) +0(1?)

where y71(x) = 2g98T) -1 (4)) i i i
yHx) = ( 3 5 )(g71(x)) is the inverse of the induced metric on X from Z

under the flow g.




Coordinates in data space

> Model data manifold S by submanifold D and balls Bs with small radii 6,
S=DXBg X--XBs,

» Use Gaussian normal coordinates on S




The induced metric in normal coordinates

Theorem

In Gaussian normal coordinates, the inverse induced metric )/_1 takes the form
-1
VB 5

=l
VBs,

and, for well-trained flows, ygél_ — 0 for 6; — 0.

= Since y~! multiplies the learning rate in the gradient ascent update,
d
D) = (D1 (20 8—J:f(x<f>) +0(A?),
the directions orthogonal to D are scaled by a vanishing factor.

= We stay on the data manifold.



Sketch of proof

'/ ie. KL(px,qx) <€

> For well-trained flows g, almost all probability mass is concentrated in
S=DXBg X---XBs,_,

1—(—:</SqX(x)dx:/S\/detD/WZ(g_l(x))dx

> When 6; — 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

> Hence, the metric yp o has to diverge, i.e. VE: — 0.



Tangent space of data manifold

>

>

From induced metric, can infer tangent space of data manifold

Perform singular value decomposition of the Jacobian ‘;—g =Uxv
Rewrite the inverse induced metric as
dg 98"
-1 211T
=——=— =UX°U
0z 0z

For N dimensional data manifold: N large singular values

> Corresponding left-singular vectors span the tangent space of the data manifold

For toy data:




Experiments with MNIST

> Classifier: CNN with 10 classes (test accuracy: 99%)
» Flow: RealNVP
> Task: Change classification of 4 to 9

ox

> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Experiments with CelebA

> Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)

> Flow: Glow
> Task: Change classification from not blonde to blonde

> Bottom row: Adersarial example computed in data space
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> Top row: Counterfactual computed in base space



Experiments with CheXpert

> Classifier: Binary CNN trained on cardiomegaly/healthy attribute
(test accuracy: 86%)

> Flow: Glow

> Task: Change classification from healthy to cardiomegaly
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> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Quantitative evaluation

> Compare classification accuracies for different samples with linear SVMs
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> Gradient ascent in Z produces higher probability in the target class

= Optimization in Z leads to better generalization



Conclusion

Summary

> Counterfactual examples have a different classification than the original sample
and lie on the data manifold

> However, a gradient ascent optimization leads to adversarial examples which lie
off the data manifold

> Normalizing flows are bijective generative models

> A gradient ascent optimization in the base space of a normalizing flow stays on the
data manifold and leads to counterfactuals

» The reason is that the induced metric makes the learning rate in orthogonal
directions small

Future questions

> Other ways to quantify the quality of counterfactuals?
> Can one replace the normalizing flow by a GAN?

> Can one learn something about the invertibility of normalizing flows using this
construction?



