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Counterfactual explanations

I Counterfactual of a sample: Data point close to original but with different
classification

I Difference between original and counterfactual reveals features which led to
classification

I Example from CelebA dataset, classified as not-blonde:

original G counterfactual G′ |G − G′ |



Adversarial examples

I For a classifier 5 : - → [0, 1]� , can generate adversarial example in class : by
computing

argmaxG 5:(G)
approximately by gradient ascent

G(C+1) = G(C) + �
% 5:
%G
(G(C))

I Problem: The adversarial example does not lie on the data manifold, so is not a
counterfactual

original G
blonde ? ≈ 0.01

adversarial example G′
blonde ? ≈ 0.99

|G − G′ |



Normalizing flows

I Generative model 6 which maps base space / to data space - bĳectively

I Probability distribution @/ in / is simple, e.g. uniform or normal

I Probability distribution @- in - is given by change of variables

@- (G) = @/(6−1(G))
����det %I

%G

����
I 6 is realized as a neural network with bĳective, easily invertible building blocks

base space /

flow←−−−−−−→
6

data space -



Counterfactuals from normalizing flows

I Generate counterfactual by performing gradient ascent in base space of
normalizing flow:

I(C+1) = I(C) + �
%( 5 ◦ 6):

%I
(I(C))

I In this way, stay on data manifold:

base space /

flow←−−−−−−→
6

data space -



Gradient ascent in base space

I Gradient ascent in / for class : of the classifier 5 with learning rate �:

I(C+1) = I(C) + �
%( 5 ◦ 6):

%I
(I(C))

I Using change-of-variable under the flow:

Theorem
Gradient ascent in the base space / is given by

G(C+1) = G(C)+� $−1
(x(t))

% 5:
%G
(G(C)) + O(�2)

where �−1(G) =
( %6
%I

%6
%I

) )
(6−1(G)) is the inverse of the induced metric on - from /

under the flow 6.



Coordinates in data space

I Model data manifold ( by submanifoldD and balls �� with small radii �,

( = D × ��1 × · · · × ��=

I Use Gaussian normal coordinates on (

(

D
G‖

G⊥

��

-



The induced metric in normal coordinates

Theorem

In Gaussian normal coordinates, the inverse induced metric �−1 takes the form

�−1 =

©­­­­­«
�−1
D

�−1
��1

. . .

�−1
��=

ª®®®®®¬
and, for well-trained flows, �−1

��8
→ 0 for �8 → 0.

⇒ Since �−1 multiplies the learning rate in the gradient ascent update,

G(C+1) = G(C)+� $−1
(x(t))

% 5:
%G
(G(C)) + O(�2) ,

the directions orthogonal toD are scaled by a vanishing factor.

⇒We stay on the data manifold.



Sketch of proof

I For well-trained flows 6, almost all probability mass is concentrated in
( = D × ��1 × · · · × ��#−=

i.e. KL(?- , @- ) < &

1 − & <
∫
(
@- (G)dG =

∫
(

√
det |� | @/(6−1(G))dG

I When �8 → 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

I Hence, the metric ���8 has to diverge, i.e. �−1
��8
→ 0.



Tangent space of data manifold

I From induced metric, can infer tangent space of data manifold

I Perform singular value decomposition of the Jacobian %6
%I = * Σ+

I Rewrite the inverse induced metric as

�−1 =
%6

%I

%6

%I

)

= * Σ2*)

I For # dimensional data manifold: # large singular values
I Corresponding left-singular vectors span the tangent space of the data manifold
I For toy data:



Experiments with MNIST

I Classifier: CNN with 10 classes (test accuracy: 99%)
I Flow: RealNVP
I Task: Change classification of 4 to 9

I Top row: Counterfactual computed in base space
I Bottom row: Adersarial example computed in data space



Experiments with CelebA

I Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
I Flow: Glow
I Task: Change classification from not blonde to blonde

I Top row: Counterfactual computed in base space
I Bottom row: Adersarial example computed in data space



Experiments with CheXpert

I Classifier: Binary CNN trained on cardiomegaly/healthy attribute
(test accuracy: 86%)

I Flow: Glow
I Task: Change classification from healthy to cardiomegaly

I Top row: Counterfactual computed in base space
I Bottom row: Adersarial example computed in data space



Quantitative evaluation

I Compare classification accuracies for different samples with linear SVMs

I Gradient ascent in / produces higher probability in the target class

⇒ Optimization in / leads to better generalization



Conclusion

Summary
I Counterfactual examples have a different classification than the original sample

and lie on the data manifold
I However, a gradient ascent optimization leads to adversarial examples which lie

off the data manifold
I Normalizing flows are bĳective generative models
I A gradient ascent optimization in the base space of a normalizing flow stays on the

data manifold and leads to counterfactuals
I The reason is that the induced metric makes the learning rate in orthogonal

directions small

Future questions
I Other ways to quantify the quality of counterfactuals?
I Can one replace the normalizing flow by a GAN?
I Can one learn something about the invertibility of normalizing flows using this

construction?


