
Geometric Deep Learning
On the interplay between mathematics and deep neural networks

Jan E. Gerken

Colloquium
Department of Mathematical Sciences

24 January 2021

Based on joint work with
Jimmy Aronsson, Oscar Carlsson, Hampus Linander,
Fredrik Ohlsson, Daniel Persson, Christoffer Petersson

Introduction to Deep Learning

Machine Learning

▶ Objective: Approximate function 𝑓 from noisy observations

𝑥𝑖 and 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖 𝜖 ∼ 𝒩(0, 𝜎) 𝑖 = 1, . . . , 𝑁
▶ For parametric models: Look for best approximation in some function space

{ 𝑓� : � ∈ Θ}
▶ Define loss ℒ which measures distance between 𝑓� and 𝑓 on training data, e.g.

squared error loss

ℒ(𝑓 , 𝑓�) =
1
𝑁

𝑁∑
𝑖=1

(𝑓�(𝑥𝑖) − 𝑦𝑖)2

▶ Find best approximation to 𝑓 by minimizing ℒ with respect to �
▶ Commonly use (variant of) gradient descent:

�𝑛+1 = �𝑛 − �∇�ℒ(𝑓 , 𝑓�𝑛)
learning rate

Neural networks

▶ A neural network 𝒩 is a certain way to define a family of functions 𝑓�
▶ For 𝑥 ∈ R𝑛 , a fully connected layer computes

𝑧 𝑗(𝑥) = 𝜎(𝑊𝑗 · 𝑥 + 𝑏 𝑗) where 𝑊𝑗 ∈ R𝑚×𝑛 , 𝑏 𝑗 ∈ R𝑚 , 𝜎 : R𝑚 → R𝑚
weights biases

(★)
▶ 𝜎 is a (simple) non-linear function that acts component-wise, often ReLU

ReLU(𝑥) = max(𝑥, 0)
▶ The neural network iterates 𝑧

𝒩�(𝑥) = 𝑧𝐿 ◦ 𝑧𝐿−1 ◦ · · · ◦ 𝑧1(𝑥) (★★)

with the parameters

� = {𝑊1 , . . . ,𝑊𝐿 , 𝑏1 , . . . , 𝑏𝐿}
▶ Choose output dimension to match task, e.g. 𝒩�(𝑥) ∈ R for binary classifier
▶ Compute gradient of loss w.r.t.𝑊𝑗 , 𝑏 𝑗 using backpropagation
▶ Name stems from similarity of (★) to neurons and visualization of (★★) as graph

Convolutional neural networks (CNNs) [Fukushima 1980]

▶ Used mostly for input images: RGB pixel values on a grid 𝒢 = ([0, 𝑤] × [0, ℎ]) ∩ Z2

▶ Interpret input as function 𝑓 : 𝒢 → R3

▶ Convolutional layer

𝑧 𝑗(𝑥) = 𝜎
(
(� 𝑗 ∗ 𝑓)(𝑥) + 𝑏 𝑗

)
= 𝜎

(∑
𝑦∈𝒢

� 𝑗(𝑦 − 𝑥) · 𝑓 (𝑦) + 𝑏 𝑗
)
, where � 𝑗 : 𝒢 → R𝑚×𝑛

kernel

▶ Kernel has finite support, e.g. 3 × 3 or 5 × 5
▶ Interpret convolution as sliding filter over image

▶ Effectively: Fully connected layer with constraints on𝑊
▶ CNNs stack many convolutional layers
▶ Higher-dimensional versions and versions on graphs exist

Deep learning

▶ Stack many (usually ∼ 5 − 100) NN layers to build deep neural networks
▶ Typically many parameters (largest model has more than 1 trillion parameters)
▶ Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of

images)
▶ Need various tricks to make training stable and efficient
▶ Use graphical processing units (GPUs) and computing clusters to run training
▶ Hugely successful, at the heart of the AI boom:

▶ Computer Vision
▶ Natural Language Processing
▶ Reinforcement Learning
▶ Protein Folding
.
.
.

Characteristics of deep learning

▶ Networks are highly overparametrized
⇒ Overfitting is often a problem

▶ New in DL: Learn features instead of craft them by hand
⇒ This made DL so successful!

▶ Have to solve non-convex optimization problem
⇒ Optimization can get stuck in local minima

▶ DL requires huge (usually labeled) datasets
⇒ Try to learn from unlabeled datasets (un- or self-supervised learning)

▶ Training large networks requires big computational resources
⇒ Develop dedicated hardware to make training more efficient

▶ Deep neural networks are not interpretable
⇒ Develop attribution methods (explainable AI)

Mathematics of deep learning

Many open questions in the mathematics of deep learning:
▶ Which functions can be approximated by deep NN?

Universal approximation theorem: [Cybenko, 1989]
[Hornik, 1991]

Any continuous function can be approximated arbitrarily well by a two-layer,
infinitely wide neural network

▶ Rigorous results exist only for very special edge cases
▶ Finite-width networks poorly understood
▶ Training procedure poorly understood
▶ Why does overparametrization and non-convex loss not hurt performance more?

Connection to renormalization group flow in quantum field theory (QFT): [Roberts et. al. 2021]

▶ Use QFT techniques to compute probability distributions of features in NN layers
▶ Perturbatively expand around infinite-width limit
▶ Interpret evolution of features through network as renormalization group flow
▶ Compute fixed points of flow for different nonlinearities

Another interesting direction: Consider low-dimensional data manifold geometrically

Geometric Deep Learning

Introduction to geometric deep learning [Bronstein et. al. 2017]

▶ Suppose the data has some symmetry,

𝑥 ∈ ℳdata ⇒ 𝑇𝑔(𝑥) ∈ ℳdata , 𝑔 ∈ 𝐺

and the labels satisfy
𝑦(𝑇𝑔(𝑥)) = 𝑇′𝑔(𝑦(𝑥)) (★)

▶ Example: Pictures of cells

rotate−−−−−−−−−→

▶ According to (★), the neural network has to learn an equivariant function

Geometric deep learning

Build symmetry properties of the data into the neural network architecture, i.e. use an
architecture which satisfies

𝒩(𝑇𝑔(𝑥)) = 𝑇′𝑔(𝒩(𝑥))
by construction.

Introduction to geometric deep learning [Bronstein et. al. 2017]

Advantages of geometric deep learning
▶ Gives systematic way to construct NN architectures (inspired by physics)

▶ Symmetries of the problem are respected exactly

▶ Higher performance on symmetric problems

▶ Less training data required

▶ Less parameters required (weight sharing)

But
▶ Network architectures usually more complex

▶ Many competing equivariant architectures available

Convolutional neural networks are equivariant

CNNs are the most prominent example of equivariant architectures:

(� ∗ 𝑓)(𝑥) =
∑
𝑦∈Z2

�(𝑦 − 𝑥) · 𝑓 (𝑦)

is equivariant with respect to translations

(� ∗ 𝑇𝑧(𝑓)) = 𝑇𝑧(� ∗ 𝑓) where (𝑇𝑧 𝑓)(𝑥) = 𝑓 (𝑥 + 𝑧)
Proven to be extremely beneficial in computer vision
▶ Intuitively: Can build same features, no matter where object is located
▶ E.g. Semantic segmentation and object detection are inherently equivariant

𝒩

𝑇𝑧 𝑇𝑧

𝒩

Group convolutions [Cohen et. al. 2018]

▶ Ordinary convolutional layers can easily be generalized to arbitrary symmetry
groups

(� ∗ 𝑓)(𝑥) =
∑
𝑦∈Z2

�(𝑦 − 𝑥) 𝑓 (𝑦)

suggests to replace 𝑥 by a group element 𝑔 ∈ 𝐺

(� ∗ 𝑓)(𝑔) =
∑
𝑦∈Z2

�(𝑇𝑔−1 (𝑦)) 𝑓 (𝑦) (★)

for the next layer, we have a feature map on 𝐺, so

(� ∗ 𝑓)(𝑔) =
∑
ℎ∈𝐺

�(𝑔−1ℎ) 𝑓 (ℎ)

▶ This architecture is equivariant. By summing over 𝐺 in the last layer, reach
invariance.

▶ Note: Since nonlinearities act pointwise, transformation properties are preserved.
▶ For continuous groups, replace sum over 𝐺 by integral with respect to Haar

measure
▶ For the layer (★), we can replace Z2 by any homogeneous space 𝐺/𝐾.
▶ Implementations exist for small finite groups like 𝐶4 or 𝐷4

Non-trivial feature representations

▶ Let 𝑓 and 𝑓 ′ = � ∗ 𝑓 transform in a non-trivial representation of 𝐺

[𝜋1(𝑔) 𝑓](𝑥) = 𝜌1(𝑔) 𝑓 (𝜎−1
1 (𝑔)𝑥)

[𝜋2(𝑔) 𝑓 ′](𝑥) = 𝜌2(𝑔) 𝑓 ′(𝜎−1
2 (𝑔)𝑥)

▶ If 𝐺 acts regularly on 𝑥 ∈ 𝒳,

(� ∗ 𝑓)(𝑥) =
∫
𝐺

d𝑔 𝜌2(𝑔)�
(
𝜎−1

2 (𝑔)𝑥
)
𝜌−1

1 (𝑔) 𝑓 (𝜎1(𝑔)𝑥0)

reference point

is an equivariant convolution
▶ For non-regular group actions, have non-trivial constraint on � in terms of 𝜌1,2
▶ For instance, if 𝐺 = 𝑁 ⋊ 𝐻 the convolution becomes

[� ∗ 𝑓](𝑥) =
∫
𝑁

d𝑛 𝜌2(𝑛)�
(
𝜎−1

2 (𝑛)𝑥
)
𝜌−1

1 (𝑛) 𝑓 (𝜎1(𝑛)𝑥0)

and the kernel satisfies the constraint

�(𝜎2(ℎ)𝑥) = 𝜌2(ℎ)�(𝑥)𝜌−1
1 (ℎ), ∀ ℎ ∈ 𝐻

This case is known as steerable GCNNs [Weiler et. al. 2018]

Spherical Convolutions [Cohen et. al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras
▶ In the first layer, the group convolution becomes

(� ∗ 𝑓)(𝑅) =
∫
𝑆2

d𝑥 �(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙𝑚(𝑥), on SO(3) use Wigner matrices 𝒟 𝑙

𝑚𝑛(𝑅), leverage FFT
▶ The convolutions become pointwise multiplications

(� ∗ 𝑓)𝑙𝑚𝑛 = �𝑙𝑚 𝑓
𝑙
𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)

Equivariant networks vs. data augmentation [Gerken et. al. to appear]

▶ Traditional way to learn symmetries in data: data augmentation
▶ Add symmetry orbit of samples to dataset ⇒ increases amount of training data
▶ For instance, consider semantic segmentation of MNIST projected onto the sphere

and randomly rotated:

▶ For data augmentation, add rotated versions of projected MNIST digits

Equivariant networks vs. data augmentation [Gerken et. al. to appear]

▶ In this case, performance of equivariant networks cannot be reached by data
augmentation

0 50k 100k 150k 200k 250k
0

20

40

60

80

100

Number of training images

Io
U

(N
on

-b
ac

kg
ro

un
d)

Semantic Segmentation on Spherical MNIST

204k S2CNN
218k CNN
1M CNN
5.5M CNN

Applications of equivariant architectures

Equivariant architectures have been applied successfully in a wide range of
applications, e.g.

▶ 3D shape recognition [Weiler et. al. 2018]
[Thomas et. al. 2018]

▶ Cosmology (CMB, galaxy counting, gravitational lensing) [Perraudin et. al. 2018]

▶ Segmentation of satellite images of deforestation [Irvin et. al. 2020]

▶ Protein structure classification [Weiler et. al. 2018]

▶ Prediction of molecular properties [Kondor et. al. 2018]
[Unke et. al. 2021]

▶ Medical image segmentation
[Worall et. al. 2018]

[Winkels et. al. 2018]
[Müller et. al. 2021]

[Thomas et. al. 2021]

(a highly biased and incomplete list)

Gauge networks [Cheng et. al. 2019]

▶ In physics: Gauge theory = theory with local symmetry, i.e. 𝑔 = 𝑔(𝑥), 𝑔 ∈ 𝐺
▶ Basis for e.g. standard model of particle physics
▶ General relativity is diffeomorphism invariant i.e. can choose coordinates at every

point
▶ Gauge networks: neural networks which are invariant with respect to local

changes of coordinates

Can formulate gauge networks in terms of fiber bundles

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, base ℳ and projection 𝜋 : 𝐸 → ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 : ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id

Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, base ℳ and projection 𝜋 : 𝐸 → ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 : ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id

▶ Formulate gauge symmetry in terms of principle 𝐺-bundle 𝑃 over input manifold
ℳ: Bundle 𝑃 with regular right action of 𝐺 on 𝑃

⊳ : 𝑃 × 𝐺 → 𝑃 , satisfying 𝜋𝑃(𝑝 ⊳ 𝑔) = 𝜋𝑃(𝑝)
▶ A gauge is a section of 𝑃

▶ In general relativity: 𝑃 is frame bundle, section of 𝑃 is choice of basis in 𝒯ℳ
▶ Let 𝑉 be a vector space on which 𝐺 acts from the left via representation 𝜌

𝑔 ⊲ 𝑣 = 𝜌(𝑔)𝑣
▶ Define equivalence relation on 𝑃 ×𝑉 by

(𝑝, 𝑣) ∼𝜌 (𝑝 ⊳ 𝑔, 𝑔−1 ⊲ 𝑣) , 𝑔 ∈ 𝐺
▶ Feature maps are sections of associated bundle 𝑃 ×𝜌 𝑉 = 𝑃 ×𝑉/∼𝜌 with projection

𝜋𝜌([𝑝, 𝑣]) = 𝜋𝑃(𝑝)

Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 �(𝑥, 𝑋)𝑠 |exp𝑥 𝑋 (𝑥)
√

det(𝑔ℳ)

with a kernel

� : ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸�) ,
satisfiying

�(𝑥, 𝑋′) = �(𝑘−1)�(𝑥, 𝑋)𝜌(𝑘) where 𝑋′ = 𝑘 ⊲ 𝑋

▶ Few concrete implementations of these concepts yet [Cohen et. al. 2019]
[de Haan et. al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et. al. 2020]

[Luo et. al. 2020]

Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 �(𝑥, 𝑋)𝑠 |exp𝑥 𝑋 (𝑥)
√

det(𝑔ℳ)

with a kernel

� : ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸�) ,
satisfiying

�(𝑥, 𝑋′) = �(𝑘−1)�(𝑥, 𝑋)𝜌(𝑘) where 𝑋′ = 𝑘 ⊲ 𝑋

▶ Few concrete implementations of these concepts yet [Cohen et. al. 2019]
[de Haan et. al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et. al. 2020]

[Luo et. al. 2020]

Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 �(𝑥, 𝑋)𝑠 |exp𝑥 𝑋 (𝑥)
√

det(𝑔ℳ)

with a kernel

� : ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸�) ,
satisfiying

�(𝑥, 𝑋′) = �(𝑘−1)�(𝑥, 𝑋)𝜌(𝑘) where 𝑋′ = 𝑘 ⊲ 𝑋

▶ Few concrete implementations of these concepts yet [Cohen et. al. 2019]
[de Haan et. al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et. al. 2020]

[Luo et. al. 2020]

Mathematics from Deep Learning

New mathematics from deep learning

Deep learning starts to influence (pure) mathematics
▶ Long history in mathematics of using data to guide intuition
▶ In math, deep learning can be useful to

▶ Find counterexamples
▶ Accelerate computation
▶ Generate symbolic solutions
▶ Detect structure in mathematical objects

▶ Last year, nature paper by Deep Mind got a lot of attention:

New mathematics from deep learning [Davies et. al. 2021]

Process proposed in Davies et. al. 2021:

Example:
▶ Let 𝑧 be a complex polyhedron
▶ Let 𝑋(𝑧) ∈ Z2 × R2 be the number of edges and vertices of 𝑧 as well as volume and

surface area
▶ Let 𝑌(𝑧) be the number of faces of 𝑧
▶ Euler’s formula ⇒ 𝑋(𝑧) · (−1, 1, 0, 0) + 2 = 𝑌(𝑧)
▶ Note: Deep learning approach also works for highly non-linear functions 𝑓

Conclusion

Summary
▶ Deep neural networks have led to remarkable results in many application domains

but are poorly understood theoretically
▶ Geometric deep learning provides a systematic framework to construct neural

network architectures
▶ Group equivariant convolutions show promising results in comparison to

traditional methods
▶ New areas of mathematics enter the study of neural networks with this field
▶ Deep learning starts to be an interesting tool also for (pure) mathematicians

Future directions
▶ Make geometric deep learning into a standard tool for deep learning
▶ Understand mathematical structure of geometric deep learning better
▶ Search for an effective description of neural networks
▶ Incorporate deep learning in traditional mathematical research

Appendix

Performance saturation for non-equivariant runs

0 200k 400k 600k 800k 1.0M 1.2M
0

20

40

60

80

100

Train Data Points

N
on

-b
ac

kg
ro

un
d

Io
U

Performance-Saturation

204k S2CNN
218k CNN
1M CNN
5.5M CNN

	Introduction to Deep Learning
	Geometric Deep Learning
	Mathematics from Deep Learning
	Appendix
	Appendix

