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Introduction to Deep Learning



Machine Learning

▶ Objective: Approximate function 𝑓 from noisy observations

𝑥𝑖 and 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖 𝜖 ∼ 𝒩(0, 𝜎) 𝑖 = 1, . . . , 𝑁
▶ For parametric models: Look for best approximation in some function space

{ 𝑓𝜃 : 𝜃 ∈ Θ}
▶ Define loss ℒ which measures distance between 𝑓𝜃 and 𝑓 on training data, e.g.

squared error loss

ℒ( 𝑓 , 𝑓𝜃) =
1
𝑁

𝑁∑
𝑖=1

( 𝑓𝜃(𝑥𝑖) − 𝑦𝑖)2

▶ Find best approximation to 𝑓 by minimizing ℒ with respect to 𝜃
▶ Commonly use (variant of) gradient descent:

𝜃𝑛+1 = 𝜃𝑛 − 𝜂∇𝜃ℒ( 𝑓 , 𝑓𝜃𝑛 )
learning rate



Neural networks

▶ A neural network 𝒩 is a certain way to define a family of functions 𝑓𝜃
▶ For 𝑥 ∈ R𝑛 , a fully connected layer computes

𝑧 𝑗(𝑥) = 𝜎(𝑊𝑗 · 𝑥 + 𝑏 𝑗) where 𝑊𝑗 ∈ R𝑚×𝑛 , 𝑏 𝑗 ∈ R𝑚 , 𝜎 : R𝑚 → R𝑚
weights biases

(★)
▶ 𝜎 is a (simple) non-linear function that acts component-wise, often ReLU

ReLU(𝑥) = max(𝑥, 0)
▶ The neural network iterates 𝑧

𝒩𝜃(𝑥) = 𝑧𝐿 ◦ 𝑧𝐿−1 ◦ · · · ◦ 𝑧1(𝑥) (★★)

with the parameters

𝜃 = {𝑊1 , . . . ,𝑊𝐿 , 𝑏1 , . . . , 𝑏𝐿}
▶ Choose output dimension to match task, e.g. 𝒩𝜃(𝑥) ∈ R for binary classifier
▶ Compute gradient of loss w.r.t.𝑊𝑗 , 𝑏 𝑗 using backpropagation
▶ Name stems from similarity of (★) to neurons and visualization of (★★) as graph



Convolutional neural networks (CNNs) [Fukushima 1980]

▶ Used mostly for input images: RGB pixel values on a grid 𝒢 = ([0, 𝑤] × [0, ℎ]) ∩ Z2

▶ Interpret input as function 𝑓 : 𝒢 → R3

▶ Convolutional layer

𝑧 𝑗(𝑥) = 𝜎
(
(𝜅 𝑗 ∗ 𝑓 )(𝑥) + 𝑏 𝑗

)
= 𝜎

( ∑
𝑦∈𝒢

𝜅 𝑗(𝑦 − 𝑥) · 𝑓 (𝑦) + 𝑏 𝑗
)
, where 𝜅 𝑗 : 𝒢 → R𝑚×𝑛

kernel

▶ Kernel has finite support, e.g. 3 × 3 or 5 × 5
▶ Interpret convolution as sliding filter over image

▶ Effectively: Fully connected layer with constraints on𝑊
▶ CNNs stack many convolutional layers
▶ Higher-dimensional versions and versions on graphs exist



Deep learning

▶ Stack many (usually ∼ 5 − 100) NN layers to build deep neural networks
▶ Typically many parameters (largest model has more than 1 trillion parameters)
▶ Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of

images)
▶ Need various tricks to make training stable and efficient
▶ Use graphical processing units (GPUs) and computing clusters to run training
▶ Hugely successful, at the heart of the AI boom:

▶ Computer Vision
▶ Natural Language Processing
▶ Reinforcement Learning
▶ Protein Folding
.
.
.



Characteristics of deep learning

▶ Networks are highly overparametrized
⇒ Overfitting is often a problem

▶ New in DL: Learn features instead of craft them by hand
⇒ This made DL so successful!

▶ Have to solve non-convex optimization problem
⇒ Optimization can get stuck in local minima

▶ DL requires huge (usually labeled) datasets
⇒ Try to learn from unlabeled datasets (un- or self-supervised learning)

▶ Training large networks requires big computational resources
⇒ Develop dedicated hardware to make training more efficient

▶ Deep neural networks are not interpretable
⇒ Develop attribution methods (explainable AI)



Mathematics of deep learning

Many open questions in the mathematics of deep learning:
▶ Which functions can be approximated by deep NN?

Universal approximation theorem: [Cybenko, 1989]
[Hornik, 1991]

Any continuous function can be approximated arbitrarily well by a two-layer,
infinitely wide neural network

▶ Rigorous results exist only for very special edge cases
▶ Finite-width networks poorly understood
▶ Training procedure poorly understood
▶ Why does overparametrization and non-convex loss not hurt performance more?

Connection to renormalization group flow in quantum field theory (QFT): [Roberts et. al. 2021]

▶ Use QFT techniques to compute probability distributions of features in NN layers
▶ Perturbatively expand around infinite-width limit
▶ Interpret evolution of features through network as renormalization group flow
▶ Compute fixed points of flow for different nonlinearities

Another interesting direction: Consider low-dimensional data manifold geometrically



Geometric Deep Learning



Introduction to geometric deep learning [Bronstein et. al. 2017]

▶ Suppose the data has some symmetry,

𝑥 ∈ ℳdata ⇒ 𝑇𝑔(𝑥) ∈ ℳdata , 𝑔 ∈ 𝐺

and the labels satisfy
𝑦(𝑇𝑔(𝑥)) = 𝑇′𝑔(𝑦(𝑥)) (★)

▶ Example: Pictures of cells

rotate−−−−−−−−−→

▶ According to (★), the neural network has to learn an equivariant function

Geometric deep learning

Build symmetry properties of the data into the neural network architecture, i.e. use an
architecture which satisfies

𝒩(𝑇𝑔(𝑥)) = 𝑇′𝑔(𝒩(𝑥))
by construction.



Introduction to geometric deep learning [Bronstein et. al. 2017]

Advantages of geometric deep learning
▶ Gives systematic way to construct NN architectures (inspired by physics)

▶ Symmetries of the problem are respected exactly

▶ Higher performance on symmetric problems

▶ Less training data required

▶ Less parameters required (weight sharing)

But
▶ Network architectures usually more complex

▶ Many competing equivariant architectures available



Convolutional neural networks are equivariant

CNNs are the most prominent example of equivariant architectures:

(𝜅 ∗ 𝑓 )(𝑥) =
∑
𝑦∈Z2

𝜅(𝑦 − 𝑥) · 𝑓 (𝑦)

is equivariant with respect to translations

(𝜅 ∗ 𝑇𝑧( 𝑓 )) = 𝑇𝑧(𝜅 ∗ 𝑓 ) where (𝑇𝑧 𝑓 )(𝑥) = 𝑓 (𝑥 + 𝑧)
Proven to be extremely beneficial in computer vision
▶ Intuitively: Can build same features, no matter where object is located
▶ E.g. Semantic segmentation and object detection are inherently equivariant

𝒩

𝑇𝑧 𝑇𝑧

𝒩



Group convolutions [Cohen et. al. 2018]

▶ Ordinary convolutional layers can easily be generalized to arbitrary symmetry
groups

(𝜅 ∗ 𝑓 )(𝑥) =
∑
𝑦∈Z2

𝜅(𝑦 − 𝑥) 𝑓 (𝑦)

suggests to replace 𝑥 by a group element 𝑔 ∈ 𝐺

(𝜅 ∗ 𝑓 )(𝑔) =
∑
𝑦∈Z2

𝜅(𝑇𝑔−1 (𝑦)) 𝑓 (𝑦) (★)

for the next layer, we have a feature map on 𝐺, so

(𝜅 ∗ 𝑓 )(𝑔) =
∑
ℎ∈𝐺

𝜅(𝑔−1ℎ) 𝑓 (ℎ)

▶ This architecture is equivariant. By summing over 𝐺 in the last layer, reach
invariance.

▶ Note: Since nonlinearities act pointwise, transformation properties are preserved.
▶ For continuous groups, replace sum over 𝐺 by integral with respect to Haar

measure
▶ For the layer (★), we can replace Z2 by any homogeneous space 𝐺/𝐾.
▶ Implementations exist for small finite groups like 𝐶4 or 𝐷4



Non-trivial feature representations

▶ Let 𝑓 and 𝑓 ′ = 𝜅 ∗ 𝑓 transform in a non-trivial representation of 𝐺

[𝜋1(𝑔) 𝑓 ](𝑥) = 𝜌1(𝑔) 𝑓 (𝜎−1
1 (𝑔)𝑥)

[𝜋2(𝑔) 𝑓 ′](𝑥) = 𝜌2(𝑔) 𝑓 ′(𝜎−1
2 (𝑔)𝑥)

▶ If 𝐺 acts regularly on 𝑥 ∈ 𝒳,

(𝜅 ∗ 𝑓 )(𝑥) =
∫
𝐺

d𝑔 𝜌2(𝑔)𝜅
(
𝜎−1

2 (𝑔)𝑥
)
𝜌−1

1 (𝑔) 𝑓 (𝜎1(𝑔)𝑥0)

reference point

is an equivariant convolution
▶ For non-regular group actions, have non-trivial constraint on 𝜅 in terms of 𝜌1,2
▶ For instance, if 𝐺 = 𝑁 ⋊ 𝐻 the convolution becomes

[𝜅 ∗ 𝑓 ](𝑥) =
∫
𝑁

d𝑛 𝜌2(𝑛)𝜅
(
𝜎−1

2 (𝑛)𝑥
)
𝜌−1

1 (𝑛) 𝑓 (𝜎1(𝑛)𝑥0)

and the kernel satisfies the constraint

𝜅(𝜎2(ℎ)𝑥) = 𝜌2(ℎ)𝜅(𝑥)𝜌−1
1 (ℎ), ∀ ℎ ∈ 𝐻

This case is known as steerable GCNNs [Weiler et. al. 2018]



Spherical Convolutions [Cohen et. al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras
▶ In the first layer, the group convolution becomes

(𝜅 ∗ 𝑓 )(𝑅) =
∫
𝑆2

d𝑥 𝜅(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙𝑚(𝑥), on SO(3) use Wigner matrices 𝒟 𝑙

𝑚𝑛(𝑅), leverage FFT
▶ The convolutions become pointwise multiplications

(𝜅 ∗ 𝑓 )𝑙𝑚𝑛 = 𝜅𝑙𝑚 𝑓
𝑙
𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)



Equivariant networks vs. data augmentation [Gerken et. al. to appear]

▶ Traditional way to learn symmetries in data: data augmentation
▶ Add symmetry orbit of samples to dataset ⇒ increases amount of training data
▶ For instance, consider semantic segmentation of MNIST projected onto the sphere

and randomly rotated:

▶ For data augmentation, add rotated versions of projected MNIST digits



Equivariant networks vs. data augmentation [Gerken et. al. to appear]

▶ In this case, performance of equivariant networks cannot be reached by data
augmentation
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Applications of equivariant architectures

Equivariant architectures have been applied successfully in a wide range of
applications, e.g.

▶ 3D shape recognition [Weiler et. al. 2018]
[Thomas et. al. 2018]

▶ Cosmology (CMB, galaxy counting, gravitational lensing) [Perraudin et. al. 2018]

▶ Segmentation of satellite images of deforestation [Irvin et. al. 2020]

▶ Protein structure classification [Weiler et. al. 2018]

▶ Prediction of molecular properties [Kondor et. al. 2018]
[Unke et. al. 2021]

▶ Medical image segmentation
[Worall et. al. 2018]

[Winkels et. al. 2018]
[Müller et. al. 2021]

[Thomas et. al. 2021]

(a highly biased and incomplete list)



Gauge networks [Cheng et. al. 2019]

▶ In physics: Gauge theory = theory with local symmetry, i.e. 𝑔 = 𝑔(𝑥), 𝑔 ∈ 𝐺
▶ Basis for e.g. standard model of particle physics
▶ General relativity is diffeomorphism invariant i.e. can choose coordinates at every

point
▶ Gauge networks: neural networks which are invariant with respect to local

changes of coordinates

Can formulate gauge networks in terms of fiber bundles

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, base ℳ and projection 𝜋 : 𝐸 → ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 : ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id



Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, base ℳ and projection 𝜋 : 𝐸 → ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 : ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id

▶ Formulate gauge symmetry in terms of principle 𝐺-bundle 𝑃 over input manifold
ℳ: Bundle 𝑃 with regular right action of 𝐺 on 𝑃

⊳ : 𝑃 × 𝐺 → 𝑃 , satisfying 𝜋𝑃(𝑝 ⊳ 𝑔) = 𝜋𝑃(𝑝)
▶ A gauge is a section of 𝑃

▶ In general relativity: 𝑃 is frame bundle, section of 𝑃 is choice of basis in 𝒯ℳ
▶ Let 𝑉 be a vector space on which 𝐺 acts from the left via representation 𝜌

𝑔 ⊲ 𝑣 = 𝜌(𝑔)𝑣
▶ Define equivalence relation on 𝑃 ×𝑉 by

(𝑝, 𝑣) ∼𝜌 (𝑝 ⊳ 𝑔, 𝑔−1 ⊲ 𝑣) , 𝑔 ∈ 𝐺
▶ Feature maps are sections of associated bundle 𝑃 ×𝜌 𝑉 = 𝑃 ×𝑉/∼𝜌 with projection

𝜋𝜌([𝑝, 𝑣]) = 𝜋𝑃(𝑝)



Gauge networks [Cheng et. al. 2019]
[Gerken et. al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 𝜅(𝑥, 𝑋)𝑠 |exp𝑥 𝑋 (𝑥)
√

det(𝑔ℳ )

with a kernel

𝜅 : ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸𝜂) ,
satisfiying

𝜅(𝑥, 𝑋′) = 𝜂(𝑘−1)𝜅(𝑥, 𝑋)𝜌(𝑘) where 𝑋′ = 𝑘 ⊲ 𝑋

▶ Few concrete implementations of these concepts yet [Cohen et. al. 2019]
[de Haan et. al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et. al. 2020]

[Luo et. al. 2020]
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Mathematics from Deep Learning



New mathematics from deep learning

Deep learning starts to influence (pure) mathematics
▶ Long history in mathematics of using data to guide intuition
▶ In math, deep learning can be useful to

▶ Find counterexamples
▶ Accelerate computation
▶ Generate symbolic solutions
▶ Detect structure in mathematical objects

▶ Last year, nature paper by Deep Mind got a lot of attention:



New mathematics from deep learning [Davies et. al. 2021]

Process proposed in Davies et. al. 2021:

Example:
▶ Let 𝑧 be a complex polyhedron
▶ Let 𝑋(𝑧) ∈ Z2 × R2 be the number of edges and vertices of 𝑧 as well as volume and

surface area
▶ Let 𝑌(𝑧) be the number of faces of 𝑧
▶ Euler’s formula ⇒ 𝑋(𝑧) · (−1, 1, 0, 0) + 2 = 𝑌(𝑧)
▶ Note: Deep learning approach also works for highly non-linear functions 𝑓



Conclusion

Summary
▶ Deep neural networks have led to remarkable results in many application domains

but are poorly understood theoretically
▶ Geometric deep learning provides a systematic framework to construct neural

network architectures
▶ Group equivariant convolutions show promising results in comparison to

traditional methods
▶ New areas of mathematics enter the study of neural networks with this field
▶ Deep learning starts to be an interesting tool also for (pure) mathematicians

Future directions
▶ Make geometric deep learning into a standard tool for deep learning
▶ Understand mathematical structure of geometric deep learning better
▶ Search for an effective description of neural networks
▶ Incorporate deep learning in traditional mathematical research



Appendix



Performance saturation for non-equivariant runs
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