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Explainable AI (XAI)

I Neural network classifiers lack inherent interpretability
I This is in contrast to more traditional methods like linear- or physical models
I For safety-critical applications this poses a serious challenge in practice
I Research progress can also be impeded
I Explanations which provide insight into the neural network decisions



Saliency maps



Clever Hans Effect [Lapuschkin et al., Nat Commun 2019]



Clever Hans



Counterfactual explanations

I Counterfactual of a sample: Data point close to original but with different
classification

I Difference between original and counterfactual reveals features which led to
classification

I Example from CelebA dataset, classified as not-blonde:

original G counterfactual G′ |G − G′ |



Counterfactuals vs. Adversarial Examples

I To change classification, naively optimize target class of classifier:

For a classifier 5 : - → [0, 1]� , compute

argmaxG 5:(G)
approximately by gradient ascent

G(C+1) = G(C) + �
% 5:
%G
(G(C))

I Problem: No semantic changes in the image, have obtained adversarial example

original G
blonde ? ≈ 0.01

adversarial example G′
blonde ? ≈ 0.99

∝ |G − G′ |



Manifold Hypothesis

I Assume that data lies on a low-dimensional submanifold of high-dimensional
input space

I E.g. MNIST pictures lie on ∼ 30-dimensional submanifold of 28 × 28 = 784
dimensional input space



Adversarial Examples



Normalizing flows

I Generative model 6 which maps base space / to data space - bĳectively,
i.e. it is a diffeomorphism

I Probability distribution @/ in / is simple, e.g. uniform or normal
I Probability distribution @- in - is given by change of variables

@- (G) = @/(6−1(G))
����det %I

%G

����
I Train by maximizing log-likelihood log @- of train data

data space - latent space /

6
←−−−−−

generation:
I ∼ @/
G = 6(I)

6−1

−−−−−−−→
inference:
G ∼ @-
I = 6−1(G)



RealNVP [Dinh et al., ICLR 2017]

I 6 is realized as a neural network with bĳective building blocks
I Network needs to be easily invertible and have a tractable Jacobian determinant
I RealNVP uses affine coupling layers

H1:3 = G1:3
H3+1:� = G3+1:� � exp(B(G1:3)) + C(G1:3)

B, C : R3 → R�−3 (deep CNNs)
forward backward

I The Jacobian is given by

%H

%G)
=

[
13 0

%H3+1:�
%G)1:3

diag
(
exp(B(G1:3))

) ] ⇒
���� %H%G)

���� = exp
(∑

9

B(G1:3)9
)

I Alternate the parts which are modified from layer to layer

I RealNVP uses multi-scale architecture



Diffeomorphic Counterfactuals



Gradient ascent in base space

I Gradient ascent in / for class : of the classifier 5 with learning rate �:

I(C+1) = I(C) + �
%( 5 ◦ 6):

%I
(I(C))

I Using change-of-variable under the flow:

Theorem
Gradient ascent in the base space / is given by

G(C+1) = G(C)+� $−1
(x(t))

% 5:
%G
(G(C)) + O(�2)

where �−1(G) =
( %6
%I

%6
%I

) )
(6−1(G)) is the inverse of the induced metric on - from /

under the flow 6.



Data coordinates

(

}

-

�

H‖
H⊥

�
2

�
?

@

I Assume that data lies in a region ( = supp(?) around data manifold �, in data
coordinates G

(G =

{
G� + G�

��� G� ∈ �G , G� ∈ (
− �

2 ,
�
2

)}
with � � 1.

I Define normal coordinates H� in a neighborhood of � by
I Choose coordinates H‖ on � and for each ? ∈ � a basis {=8} of )?�⊥
I Construct affinely parametrized geodesic � : [0, 1] → - with �(0) = ?, �(1) = @ and

�′(0) ∈ )?�⊥
I The coordinates of @ are given by H‖ and the components H 8⊥ of �′(0) in the basis {=8}
I For sufficiently small neighborhoods, this is unique
I Rescale {=8} so that ( in H coordinates also has extension �



Gradient ascent in H-coordinates

I By choosing {=8} orthogonal wrt �, the inverse induced metric takes the form

���(H) =

©«
�−1
�
(H)

�−1
⊥1

. . .

�−1
⊥#-−#�

ª®®®®®¬

��

.

I The gradient ascent update 6(I(8+1)) = 6(I(8)) + � ��
% 5C
%G�
+ O(�2) becomes

��
% 5C

%G�
=

%G

%H
�
‖
�
��
�

% 5C
%H�‖
+ %G

%H 8⊥
�−1
⊥8

% 5C

%H 8⊥

I For �−1
⊥8 → 0 and %G

%H⊥
bounded we have

��
% 5C

%G�
→ %G

%H
�
‖
�
��
�

% 5C
%H�‖

and hence the update step points along the data manifold.

⇒ In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For & ∈ (0, 1) and 6 a normalizing flow with Kullback–Leibler divergence KL(?, @) < &,

�−1
⊥8 → 0 as �→ 0

for all 8 ∈ {1, . . . , #- − #�}.

Theorem (Approximately Diffeomorphic Counterfactuals)

If 6 : /→ - is a generative model with � ⊂ 6(/) and image 6(/)which extends in any
non-singular orthogonal direction H 8⊥ to regions outside of � of low probability
?(G) � 1,

�−1
⊥8 → 0

for �→ 0 for all non-singular orthogonal directions H 8⊥.

⇒ For well-trained generative models, the gradient ascent update in / stays on the
data manifold



Sketch of proof (flow-case)

I For flows 6 with KL(?, @) < &, almost all probability mass is concentrated in
( = supp(?)

0 < 1 − & <
∫
(G

@- (G)dG

=

∫
(G

@/(6−1(G))
���� %I0%G

����dG
=

∫
�H

√
|�� |

#-−#�∏
8=1

∫ �/2

−�/2

√
|�⊥8 | @/(I(H))dH 8⊥ dH‖

I When �→ 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

I Hence, the metric �⊥8 has to diverge, i.e. �−1
⊥8 → 0.



Toy example

 

grad asc in X
grad asc in Z
x

x ′

g(z ′)



Diffeomorphic Counterfactuals with MNIST

I Classifier: CNN with 10 classes (test accuracy: 99%)
I Flow: RealNVP [Dinh et al., ICLR 2017]

I Task: Change classification of 4 to 9

I Top row: Counterfactual computed in base space
I Bottom row: Adersarial example computed in data space



Diffeomorphic Counterfactuals with CelebA

I Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
I Flow: Glow [Kingma et al., NeurIPS 2018]

I Task: Change classification from not blonde to blonde

I Top row: Counterfactual computed in base space
I Bottom row: Adersarial example computed in data space



Approximately Diffeomorphic Counterfactuals with CelebA-HQ

I For general generating models, inversion not exact (G̃ = 6(I0) ≠ G0)
I Approximate diffeomorphic counterfactuals can be generated for

high-dimensional datasets (1024 × 1024 pixels for CelebA-HQ)
I Use StyleGAN trained on CelebA-HQ [Karras et al., IEEE/CVF 2019]

I Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al., CVPR 2022]



Diffeomorphic Counterfactuals for regression

I Consider crowd-counting dataset of mall images
I Count number of people in the image [Ribera et al., CVPR 2019]

I Flow: Glow [Kingma et al., NeurIPS 2018]

I Optimize for low number of people

I Optimize for high number of people



Quantitative evaluation

I Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not
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I The ground truth classes for the ten nearest neighbors matches the target values of
the counterfactuals more often for Diffeomorphic Counterfactuals then for
adversarials
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Conclusion

Summary
I Counterfactuals explain black-box classifiers by providing a realistic sample close

to the original but with a different classification
I However, gradient ascent optimization of the target class leads to adversarial

examples which lie off the data manifold
I Normalizing flows are bĳective generative models
I Gradient ascent optimization in the base space of a normalizing flow stays on the

data manifold and leads to counterfactuals
I For non-bĳective generative models, this is still true approximately
I The reason is that the induced metric makes the learning rate in orthogonal

directions small

Outlook
I Can one learn something about the invertibility of normalizing flows using this

construction?
I The construction is very general, can it be applied to other problems where a

neural network output needs to be optimized on a data manifold given by a
generative model?



Appendix



Tangent space of data manifold

I From induced metric, can infer tangent space of data manifold

I Perform singular value decomposition of the Jacobian %6
%I = * Σ+

I Rewrite the inverse induced metric as

�−1 =
%6

%I

%6

%I

)

= * Σ2*)

I For # dimensional data manifold: # large singular values
I Corresponding left-singular vectors span the tangent space of the data manifold
I For toy data:



Eigenvalue spectrum of Jacobian

λmax λmin
Eigen values
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Approximate Counterfactuals with VAEs
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