Diffeomorphic Counterfactuals and Generative Models

Jan E. Gerken

Geometric Deep Learning Seminar Chalmers University of Technology

Based on joint work with Ann-Kathrin Dombrowski, Klaus-Robert Müller and Pan Kessel

Published as a Contributed Talk at 2021 ICML Workshop on Invertible Neural Networks Normalizing Flows, and Explicit Likelihood Models

Journal Paper under review

Explainable AI (XAI)

- \triangleright Neural network classifiers lack inherent interpretability
- \triangleright This is in contrast to more traditional methods like linear- or physical models
- \triangleright For safety-critical applications this poses a serious challenge in practice
- ▶ Research progress can also be impeded
- \triangleright Explanations which provide insight into the neural network decisions

Saliency maps

Clever Hans

Counterfactual explanations

- ▶ *Counterfactual of a sample*: Data point close to original but with different classification
- Difference between original and counterfactual reveals features which led to classification
- ▶ Example from CelebA dataset, classified as not-blonde:

original x counterfactual x'

 $|x - x'|$

Counterfactuals vs. Adversarial Examples

 \triangleright To change classification, naively optimize target class of classifier:

For a classifier $f: X \to [0,1]^C$, compute

 $argmax_x f_k(x)$

approximately by gradient ascent

$$
x^{(t+1)} = x^{(t)} + \eta \frac{\partial f_k}{\partial x} (x^{(t)})
$$

• ∂x **C**
• Problem: No semantic changes in the image, have obtained *adversarial example*

original x blonde $p \approx 0.01$

adversarial example x'
blonde $n \approx 0.99$ blonde $p \approx 0.99$

$$
\propto |x - x'|
$$

Manifold Hypothesis

- \blacktriangleright Assume that data lies on a low-dimensional submanifold of high-dimensional input space
- I E.g. MNIST pictures lie on [∼] 30-dimensional submanifold of ²⁸ [×] ²⁸ ⁼ ⁷⁸⁴ dimensional input space

Adversarial Examples

classifier \boldsymbol{f}

Normalizing flows

- \triangleright Generative model g which maps base space Z to data space X *bijectively*, i.e. it is a *diffeomorphism*
- ▶ Probability distribution q_Z in Z is simple, e.g. uniform or normal\n\n▶ Probability distribution q_X in X is given by change of variables
- Probability distribution q_X in X is given by change of variables

$$
q_X(x) = q_Z(g^{-1}(x)) \left| \det \frac{\partial z}{\partial x} \right|
$$

Train by maximizing log-likelihood log q_X **of train data**

RealNVP [Dinh et al., ICLR 2017]

- \bullet *g* is realized as a neural network with bijective building blocks
- In Network needs to be easily invertible and have a tractable Jacobian determinant
- ▶ RealNVP uses *affine coupling layers*

$$
y_{1:d} = x_{1:d}
$$

\n
$$
y_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d})
$$

\n
$$
s, t : \mathbb{R}^d \rightarrow \mathbb{R}^{D-d} \qquad \text{(deep CNNs)}
$$

forward backward

 \blacktriangleright The Jacobian is given by

$$
\frac{\partial y}{\partial x^T} = \begin{bmatrix} 1_d & 0 \\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \text{diag}\left(\exp(s(x_{1:d}))\right) \end{bmatrix} \qquad \Rightarrow \qquad \left|\frac{\partial y}{\partial x^T}\right| = \exp\left(\sum_j s(x_{1:d})_j\right)
$$

 \blacktriangleright Alternate the parts which are modified from layer to layer

I RealNVP uses multi-scale architecture

Diffeomorphic Counterfactuals

Gradient ascent in base space

Gradient ascent in Z for class k of the classifier f with learning rate λ :

$$
z^{(t+1)} = z^{(t)} + \lambda \frac{\partial (f \circ g)_k}{\partial z} (z^{(t)})
$$

 \triangleright Using change-of-variable under the flow:

Theorem

Gradient ascent in the base space Z is given by

$$
x^{(t+1)} = x^{(t)} + \lambda \gamma^{-1}(x^{(t)}) \frac{\partial f_k}{\partial x}(x^{(t)}) + O(\lambda^2)
$$

where $\gamma^{-1}(x) = \left(\frac{\partial g}{\partial z}\right)$ ∂z $\frac{\partial g}{\partial \tau}$ $\frac{\partial g}{\partial z}^1$)($g^{-1}(x)$) is the inverse of the induced metric on X from Z under the flow χ .

Data coordinates

Assume that data lies in a region $S = \text{supp}(p)$ around data manifold D, in data coordinates x^{α}

$$
S_x = \left\{ x_D + x_\delta \mid x_D \in D_x, \ x_\delta^\alpha \in \left(-\frac{\delta}{2}, \frac{\delta}{2} \right) \right\}
$$

with $\delta \ll 1$.

- ► Define normal coordinates y^{μ} in a neighborhood of *D* by

► Choose coordinates u_{μ} on *D* and for each $n \in D$ a basis $\{n_i\}$
	- ► Choose coordinates y_{\parallel} on D and for each $p \in D$ a basis $\{n_i\}$ of $T_p D_{\perp}$
	- ► Construct affinely parametrized geodesic σ : [0, 1] \rightarrow X with σ (0) = p , σ (1) = q and $\sigma'(0) \in T_p D_\perp$
The securing
	- ► The coordinates of q are given by y_{\parallel} and the components y_{\perp}^i of $\sigma'(0)$ in the basis $\{n_i\}$
	- \triangleright For sufficiently small neighborhoods, this is unique
	- Rescale $\{n_i\}$ so that S in \bar{y} coordinates also has extension δ

Gradient ascent in ν -coordinates

▶ By choosing ${n_i}$ orthogonal wrt γ , the inverse induced metric takes the form

$$
\gamma^{\mu\nu}(y) = \begin{pmatrix} \gamma_D^{-1}(y) & & & & \\ & \gamma_{\perp_1}^{-1} & & & \\ & & \ddots & & \\ & & & \gamma_{\perp_{N_X - N_D}}^{-1} \end{pmatrix}^{\mu\nu}
$$

► The gradient ascent update $g^{\alpha}(z^{(i+1)}) = g^{\alpha}(z^{(i)}) + \lambda \gamma^{\alpha\beta} \frac{\partial f_t}{\partial x^{\beta}}$ $\frac{\partial x}{\partial x}$ $\frac{t}{\beta} + O(\lambda^2)$ becomes

$$
\gamma^{\alpha\beta} \frac{\partial f_t}{\partial x^{\beta}} = \frac{\partial x^{\alpha}}{\partial y^{\mu}_{\parallel}} \gamma^{\mu\nu}_{D} \frac{\partial f_t}{\partial y^{\nu}_{\parallel}} + \frac{\partial x^{\alpha}}{\partial y^i_{\perp}} \gamma^{-1}_{\perp i} \frac{\partial f_t}{\partial y^i_{\perp}}
$$

For $\gamma_{\perp i}^{-1} \to 0$ and $\frac{\partial x}{\partial y_{\perp}}$ bounded we have

$$
\gamma^{\alpha\beta} \frac{\partial f_t}{\partial x^{\beta}} \to \frac{\partial x^{\alpha}}{\partial y_{\parallel}^{\mu}} \gamma_D^{\mu\nu} \frac{\partial f_t}{\partial y_{\parallel}^{\nu}}
$$

and hence the update step points along the data manifold.

⇒ *In this case, obtain counterfactuals, not adversarial examples!*

The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For $\epsilon \in (0, 1)$ and g a normalizing flow with Kullback–Leibler divergence KL(p, q) < ϵ ,

$$
\gamma_{\perp_i}^{-1} \to 0 \qquad \text{as} \qquad \delta \to 0
$$

for all $i \in \{1, \ldots, N_X - N_D\}$.

Theorem (Approximately Diffeomorphic Counterfactuals)

If $g: Z \to X$ is a generative model with $D \subset g(Z)$ and image $g(Z)$ which extends in any non-singular orthogonal direction y'_{\perp} to regions outside of D of low probability $n(x) \ll 1$ $p(x) \ll 1$,

$$
\gamma_{\perp_i}^{-1} \to 0
$$

for $\delta \to 0$ for all non-singular orthogonal directions y_{\perp}^i .

\Rightarrow *For well-trained generative models, the gradient ascent update in* Z *stays on the data manifold*

Sketch of proof (flow-case)

For flows g with $KL(p, q) < \epsilon$, almost all probability mass is concentrated in $S = \text{supp}(p)$

$$
0 < 1 - \epsilon < \int_{S_x} q_X(x) dx
$$

=
$$
\int_{S_x} q_Z(g^{-1}(x)) \left| \frac{\partial z^a}{\partial x^{\alpha}} \right| dx
$$

=
$$
\int_{D_y} \sqrt{|\gamma_D|} \prod_{i=1}^{N_X - N_D} \int_{-\delta/2}^{\delta/2} \sqrt{|\gamma_{\perp i}|} q_Z(z(y)) dy_{\perp}^i dy_{\parallel}
$$

- \triangleright When $\delta \rightarrow 0$, the integration domain shrinks to zero, but the value of the integral is bounded from below
- ► Hence, the metric γ_{\perp_i} has to diverge, i.e. $\gamma_{\perp_i}^{-1} \to 0$.

Toy example

Diffeomorphic Counterfactuals with MNIST

- ▶ Classifier: CNN with 10 classes (test accuracy: 99%)
- \blacktriangleright Flow: RealNVP [Dinh et al., ICLR 2017]
	-

 \blacktriangleright Task: Change classification of 4 to 9

- \blacktriangleright Top row: Counterfactual computed in base space
- \triangleright Bottom row: Adersarial example computed in data space

Diffeomorphic Counterfactuals with CelebA

- ▶ Classifier: Binary CNN trained on *blonde/not blonde* attribute (test accuracy: 94%)
- ▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Task: Change classification from *not blonde* to *blonde*

- \blacktriangleright Top row: Counterfactual computed in base space
- \triangleright Bottom row: Adersarial example computed in data space

Approximately Diffeomorphic Counterfactuals with CelebA-HQ

- ► For general generating models, inversion not exact $(\tilde{x} = g(z_0) \neq x_0)$
- \blacktriangleright Approximate diffeomorphic counterfactuals can be generated for high-dimensional datasets (1024 × 1024 pixels for CelebA-HQ)
- Use StyleGAN trained on CelebA-HQ [Karras et al., IEEE/CVF 2019]
- ► Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al., CVPR 2022]

Diffeomorphic Counterfactuals for regression

- \triangleright Consider crowd-counting dataset of mall images
- ▶ Count number of people in the image [Ribera et al., CVPR 2019]
- ▶ Flow: Glow [Kingma et al., NeurIPS 2018]

Z

 \overline{X}

 \triangleright Optimize for low number of people

 \triangleright Optimize for high number of people

 \boldsymbol{x}

 x^{\prime}

 \hbar

 x^{\prime}

Quantitative evaluation

Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not

I The ground truth classes for the ten nearest neighbors matches the target values of the counterfactuals more often for Diffeomorphic Counterfactuals then for adversarials

Conclusion

Summary

- \triangleright Counterfactuals explain black-box classifiers by providing a realistic sample close to the original but with a different classification
- \blacktriangleright However, gradient ascent optimization of the target class leads to adversarial examples which lie off the data manifold
- \triangleright Normalizing flows are bijective generative models
- \triangleright Gradient ascent optimization in the base space of a normalizing flow stays on the data manifold and leads to counterfactuals
- \triangleright For non-bijective generative models, this is still true approximately
- \triangleright The reason is that the induced metric makes the learning rate in orthogonal directions small

Outlook

- \triangleright Can one learn something about the invertibility of normalizing flows using this construction?
- \triangleright The construction is very general, can it be applied to other problems where a neural network output needs to be optimized on a data manifold given by a generative model?

[Appendix](#page-24-0)

Tangent space of data manifold

- \blacktriangleright From induced metric, can infer tangent space of data manifold
- Perform singular value decomposition of the Jacobian $\frac{\partial g}{\partial z}$ $\frac{\partial g}{\partial z} = U \Sigma V$
- \blacktriangleright Rewrite the inverse induced metric as

$$
\gamma^{-1} = \frac{\partial g}{\partial z} \frac{\partial g}{\partial z}^T = U \Sigma^2 U^T
$$

- For N dimensional data manifold: N large singular values
- Corresponding left-singular vectors span the tangent space of the data manifold
- \blacktriangleright For toy data:

Eigenvalue spectrum of Jacobian

Approximate Counterfactuals with VAEs

