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Explainable AI (XAI)

Rooster

prediction f(x

input

Neural network classifiers lack inherent interpretability

This is in contrast to more traditional methods like linear- or physical models
For safety-critical applications this poses a serious challenge in practice
Research progress can also be impeded
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Explanations which provide insight into the neural network decisions
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[Lapuschkin et al., Nat Commun 2019]

Clever Hans Effect

Artificial picture of a car

Horse-picture from Pascal VOC data set
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Clever Hans




Counterfactual explanations

> Counterfactual of a sample: Data point close to original but with different
classification

> Difference between original and counterfactual reveals features which led to
classification

> Example from CelebA dataset, classified as not-blonde:

original x counterfactual x’ [x — x|



Counterfactuals vs. Adversarial Examples

> To change classification, naively optimize target class of classifier:

For a classifier f : X — [0, 1]C, compute

argmax, fi(x)

approximately by gradient ascent
NESINNGIN n%(xm)

> Problem: No semantic changes in the image, have obtained adversarial example

original x adversarial example x” o [x — x’|
blonde p = 0.01 blonde p = 0.99



Manifold Hypothesis

high data
density

source class

low data
density

> Assume that data lies on a low-dimensional submanifold of high-dimensional
input space

> E.g. MNIST pictures lie on ~ 30-dimensional submanifold of 28 x 28 = 784
dimensional input space



Adversarial Examples

classifier f




Normalizing flows
> Generative model g which maps base space Z to data space X bijectively,
i.e. itis a diffeomorphism
> Probability distribution gz in Z is simple, e.g. uniform or normal

> Probability distribution gx in X is given by change of variables

dz
det 5

» Train by maximizing log-likelihood log gx of train data

gx(x) = 42(g7(x))

data space X latent space Z
g generation:
— z~4qz
x=g(2)
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RealNVP [Dinh et al., ICLR 2017]

> g isrealized as a neural network with bijective building blocks
> Network needs to be easily invertible and have a tractable Jacobian determinant

» RealNVP uses affine coupling layers

Y1:d = X144 0 ? oﬂ?
Yd+1:.0 = Xd+1:0 © exp(s(x1.4)) + t(x1.q) °yo @ ©

s, t:RY > RP (deep CNNs) 0 2 0 0 Q

forward backward

» The Jacobian is given by

dy
axT

= eXP(ZS(XLd)j)
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> Alternate the parts which are modified from layer to layer

»> RealNVP uses multi-scale architecture



Diffeomorphic Counterfactuals

generative classifier f
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Gradient ascent in base space

> Gradient ascent in Z for class k of the classifier f with learning rate A:

L) _ () 4 /\a(f g)k( (t))
> Using change-of-variable under the flow:

Theorem

Gradient ascent in the base space Z is given by

2D = x B3 y~1(x®)) %(M) +0(1?)

where y71(x) = 2g98T) -1 (4)) i i i
yHx) = ( 3 5 )(g71(x)) is the inverse of the induced metric on X from Z

under the flow g.




Data coordinates

> Assume that data lies in a region S = supp(p) around data manifold D, in data
coordinates x“
— D 2 6 b
Sy = xD+x5‘xD € Dy, x5 € (—5,5)
with 6 < 1.
> Define normal coordinates y# in a neighborhood of D by
> Choose coordinates y) on D and for each p € D abasis {n;} of T,D
> Construct affinely parametrized geodesic o : [0,1] — X with ¢(0) = p, 0(1) = g and
o’(0) € T,D.
> The coordinates of g are given by y|; and the components v} of ¢(0) in the basis {n;}

> For sufficiently small neighborhoods, this is unique
> Rescale {n;} so that S in y coordinates also has extension 6



Gradient ascent in y-coordinates

> By choosing {n;} orthogonal wrt y, the inverse induced metric takes the form
— %
) 2

. i
Y (y) =

> The gradient ascent update g®(z(*1) = g®(z()) + A y“ﬁ% + O(A?) becomes
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> For )/Ll — 0and 8‘97’1 bounded we have
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and hence the update step points along the data manifold.

= In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For € € (0,1) and g a normalizing flow with Kullback-Leibler divergence KL(p, q) < €,
)/Ll -0 as 6—0

forallie {1,...,Nx = Np}.

Theorem (Approximately Diffeomorphic Counterfactuals)

If ¢ : Z — X is a generative model with D C ¢(Z) and image g(Z) which extends in any
non-singular orthogonal direction y, to regions outside of D of low probability
plx) <1,

yLl —0

for 6 — 0 for all non-singular orthogonal directions yi.

= For well-trained generative models, the gradient ascent update in Z stays on the
data manifold



Sketch of proof (flow-case)

> For flows ¢ with KL(p, q) < €, almost all probability mass is concentrated in
S = supp(p)

O<1—e</ gx(x)dx
Sx

- / 42(57 ()
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> When 0 — 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

> Hence, the metric y; has to diverge, i.e. yl} — 0.



Toy example

grad asc in X
grad asc in Z




Diffeomorphic Counterfactuals with MNIST

> Classifier: CNN with 10 classes (test accuracy: 99%)
> FIOWZ RealNVP [Dinh et al., ICLR 2017]
> Task: Change classification of 4 to 9

ox

> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Diffeomorphic Counterfactuals with CelebA

> Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)

» Flow: Glow [Kingma et al., NeurIPS 2018]
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> Bottom row: Adersarial example computed in data space

> Task: Change classification from not blonde to blonde
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> Top row: Counterfactual computed in base space



Approximately Diffeomorphic Counterfactuals with CelebA-HQ

> For general generating models, inversion not exact (¥ = g(zg) # xo)

> Approximate diffeomorphic counterfactuals can be generated for
high-dimensional datasets (1024 x 1024 pixels for CelebA-HQ)

» Use StyleGAN trained on CelebA-HQ [Karras et al., IEEE/CVF 2019]
> Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al., CVPR 2022]
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Diffeomorphic Counterfactuals for regression

> Consider crowd-counting dataset of mall images

> Count number of people in the image [Ribera et al,, CVPR 2019]
> FIOW: GIOW [Kingma et al., NeurIPS 2018]
>

Optimize for low number of people




Quantitative evaluation

> Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not

I original images BB grad ascin X B grad asc in Z

I
G

acc target class

MNIST  CelebA  CheXpert Mall (max) Mall (min)

> The ground truth classes for the ten nearest neighbors matches the target values of
the counterfactuals more often for Diffeomorphic Counterfactuals then for
adversarials
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Conclusion

Summary

> Counterfactuals explain black-box classifiers by providing a realistic sample close
to the original but with a different classification

> However, gradient ascent optimization of the target class leads to adversarial
examples which lie off the data manifold

> Normalizing flows are bijective generative models

> Gradient ascent optimization in the base space of a normalizing flow stays on the
data manifold and leads to counterfactuals

> For non-bijective generative models, this is still true approximately

» The reason is that the induced metric makes the learning rate in orthogonal
directions small

Outlook

> Can one learn something about the invertibility of normalizing flows using this
construction?

> The construction is very general, can it be applied to other problems where a
neural network output needs to be optimized on a data manifold given by a
generative model?
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Tangent space of data manifold

>

>

From induced metric, can infer tangent space of data manifold

Perform singular value decomposition of the Jacobian ‘;—g =Uxv
Rewrite the inverse induced metric as
dg 98"
-1 211T
=——=— =UX°U
0z 0z

For N dimensional data manifold: N large singular values

> Corresponding left-singular vectors span the tangent space of the data manifold

For toy data:




Eigenvalue spectrum of Jacobian
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Approximate Counterfactuals with VAEs
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