Equivariance versus Augmentation for Spherical Images

Jan E. Gerken

UMEÅ UNIVERSITY UNIVERSITY OF GOTHENBURG

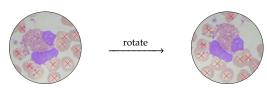
> **ICML 2022** Baltimore

Based on joint work with

Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson and Daniel Persson

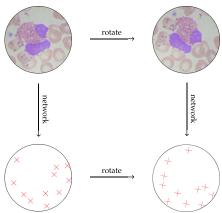
Equivariance

Many machine learning problems have inherent symmetry, e.g.



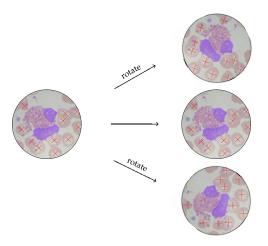
Equivariance

 Equivariant neural networks build symmetries of problem into network architecture:



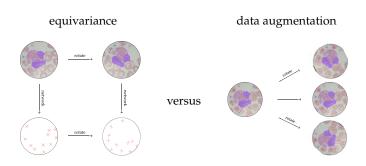
- Requires specialized architectures
- ▶ Widely used principle to construct networks, often beneficial in practice

Data augmentation



- lacktriangleright Train on randomly transformed training samples \Rightarrow enlarges training dataset
- ▶ No special architectures required, easy to implement
- No guarantee for equivariance

Our contribution

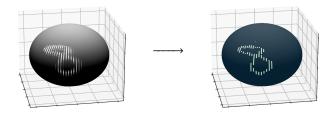


- Contrast equivariance and data augmentation
- Study invariant and equivariant problems
- Use "clean" academic problems and simple networks to minimize influence of dataset and optimized architectures / training procedures

Tasks and Dataset

Dataset: MNIST digits projected onto the sphere

► Tasks: Classification and semantic segmentation



- ► Symmetry: 3d rotations = SO(3)
- Classification is an *invariant* task, semantic segmentation is *equivariant*
- Variants with FashionMNIST and more digits on one sphere

Models

Equivariant models

► S2CNN — equivariant convolutions with respect to SO(3)

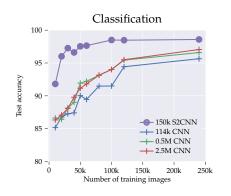
[2018 Cohen et al.]

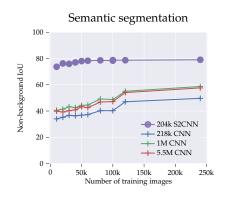
- ▶ Perform convolutions in Fourier space of S^2 or SO(3)
- New projection layer from SO(3) back to S^2
- ► Trained on *unrotated* input samples

Non-equivariant models

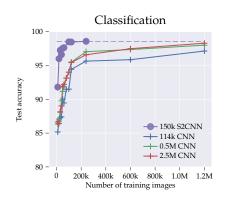
- ► Fully-convolutional networks with bottleneck
- ► Trained on *rotated* input samples

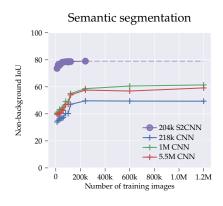
Equivariance vs data augmentation





Performance saturation





Conclusions

- ► Equivariant architectures outperform non-equivariant networks trained with large amounts of data augmentation
- This is particularly pronounced for equivariant tasks and reduced for invariant tasks
- In the future, it would be interesting to extend our work to more general non-flat manifolds as studied in geometric deep learning