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Equivariance

> Many machine learning problems have inherent symmetry, e.g.

rotate




Equivariance

> Equivariant neural networks build symmetries of problem into network
architecture:

rotate

YIomiau
romiau

rotate

> Requires specialized architectures

> Widely used principle to construct networks, often beneficial in practice



Data augmentation

> Train on randomly transformed training samples = enlarges training dataset
> No special architectures required, easy to implement

> No guarantee for equivariance



Our contribution

equivariance

L

data augmentation

versus

> Contrast equivariance and data augmentation

> Study invariant and equivariant problems

> Use “clean” academic problems and simple networks to minimize influence of
dataset and optimized architectures / training procedures



Tasks and Dataset

> Dataset: MNIST digits projected onto the sphere

> Tasks: Classification and semantic segmentation

> Symmetry: 3d rotations = SO(3)

> Classification is an invariant task, semantic segmentation is equivariant

> Variants with FashionMNIST and more digits on one sphere



Models

Equivariant models

> S2CNN — equivariant convolutions with respect to SO(3)
» Perform convolutions in Fourier space of 52 or SO(3)
> New projection layer from SO(3) back to 52

> Trained on unrotated input samples

[2018 Cohen et al.]

Non-equivariant models

> Fully-convolutional networks with bottleneck

> Trained on rotated input samples




Results




Equivariance vs data augmentation
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Performance saturation

Test accuracy
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Conclusions

> Equivariant architectures outperform non-equivariant networks trained with large
amounts of data augmentation

> This is particularly pronounced for equivariant tasks and reduced for invariant
tasks

> In the future, it would be interesting to extend our work to more general non-flat
manifolds as studied in geometric deep learning
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