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Geometry of the training data

high data
density
low data
density

> Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space

> E.g. MNIST pictures lie on ~ 30-dim. submanifold of 28 x 28 = 784 dim. input space



Learned dlffeOInOl’phlSl’nS [Dinh, Krueger, Bengio, 2014]

» How to characterize the data manifold?

> Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow

v

Diffeomorphism is given by another neural network, a normalizing flow

> Get access to the data manifold in a functional form

v

Connections to shape matching Jansson, Modin, 2022]

. . [Chen, Karlsson, Ringh, 2021]
» Connections to 0pt1ma1 transport [Bauer, Joshi, Modin, 2017
[Onken, Fung, Li, Ruthotto 2020]



Explainable AI (XAI) [Review: Samek et al. 2021]

Rooster

prediction f(x

input T

Neural network classifiers lack inherent interpretability
This is in contrast to more traditional methods like linear- or physical models
For safety-critical applications this poses a serious challenge in practice

Research progress can also be impeded
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Need explanations which provide insight into the neural network decisions



Counterfactual explanations

> Counterfactual of a sample: Data point close to original but with different
classification

> Difference between original and counterfactual reveals features which led to
classification

> Example from CelebA dataset, classified as not-blonde:

original x counterfactual x’ [x — x|
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Adversarial Examples

> Small perturbations can lead to misclassifications

Pblonde (l) =0.01 but Pblonde (.) =0.99

> Reason: Classifier only trained on the data manifold
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COUI’IteI‘faCtualS [Dombrowski, JG, Miiller, Kessel, 2022]

> Can use normalizing flows to optimize along the data manifold = counterfactuals

original counterfactual ~adversarial example
not blond blond (p=0.99)  blond (p=0.99)

generative
model g
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Data coordinates

> Assume that data lies in a region S = supp(p) around data manifold D, in data
coordinates x®

o0 6
- a -2 2
Sx—{xD+x5‘xDer, X e( 2,2)}
with 6 < 1.

> Define normal coordinates y# in a neighborhood of D



Gradient ascent in y-coordinates

> By choosing {n;} orthogonal wrt y, the inverse induced metric takes the form
— v
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> The gradient ascent update g“(z(i+1)) = g“(z(i)) +A yaﬁ% + O(A2) becomes
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> For yll_l — O0and ;Ti bounded we have
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and hence the update step points along the data manifold.

= In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For € € (0,1) and g a normalizing flow with Kullback-Leibler divergence KL(p, 9) < €,
yll_l -0 as 6—0

forallie {1,...,Nx = Np}.

= For well-trained generative models, the gradient ascent update in Z stays on the
data manifold



Toy example

grad asc in X
grad asc in Z




Diffeomorphic Counterfactuals with CelebA

> Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
> Flow: Glow [Kingma et al., NeurIPS 2018]

> Task: Change classification from not blonde to blonde
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> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Diffeomorphic Counterfactuals for regression

> Consider crowd-counting dataset of mall images

> Count number of people in the image [Ribera et al,, CVPR 2019]
» Flow: Glow [Kingma et al., NeurIPS 2018]
>

Optimize for low number of people
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> Counterfactuals explain black-box classifiers by providing a realistic sample close to the
original but with a different classification

> Naive gradient ascent leads off the data manifold, yielding adversarial examples

> Gradient ascent in the base space of a normalizing flow leads to optimization on the
data manifold

> Concept be used for a wide range of different problems
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> Geometry can help in several key parts of the learning process, bringing abstract
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> Counterfactuals explain black-box classifiers by providing a realistic sample close to the
original but with a different classification

> Naive gradient ascent leads off the data manifold, yielding adversarial examples

> Gradient ascent in the base space of a normalizing flow leads to optimization on the
data manifold

> Concept be used for a wide range of different problems

> New areas of mathematics enter the study of neural networks
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