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Geometry of the training data

▶ Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space
▶ E.g. MNIST pictures lie on ∼ 30-dim. submanifold of 28× 28 = 784 dim. input space



Learned diffeomorphisms [Dinh, Krueger, Bengio, 2014]

▶ How to characterize the data manifold?

▶ Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow

▶ Diffeomorphism is given by another neural network, a normalizing flow

▶ Get access to the data manifold in a functional form

▶ Connections to shape matching [Jansson, Modin, 2022]

▶ Connections to optimal transport
[Chen, Karlsson, Ringh, 2021]

[Bauer, Joshi, Modin, 2017]
[Onken, Fung, Li, Ruthotto 2020]



Explainable AI (XAI) [Review: Samek et al. 2021]

▶ Neural network classifiers lack inherent interpretability
▶ This is in contrast to more traditional methods like linear- or physical models
▶ For safety-critical applications this poses a serious challenge in practice
▶ Research progress can also be impeded
▶ Need explanations which provide insight into the neural network decisions



Counterfactual explanations

▶ Counterfactual of a sample: Data point close to original but with different
classification

▶ Difference between original and counterfactual reveals features which led to
classification

▶ Example from CelebA dataset, classified as not-blonde:

original 𝑥 counterfactual 𝑥′ |𝑥 − 𝑥′ |



Adversarial Examples
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▶ Reason: Classifier only trained on the data manifold
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Counterfactuals [Dombrowski, JG, Müller, Kessel, 2022]

▶ Can use normalizing flows to optimize along the data manifold ⇒ counterfactuals

original
not blond

adversarial example
blond (p≈0.99)

counterfactual
blond (p≈0.99)



Data coordinates
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▶ Assume that data lies in a region 𝑆 = supp(𝑝) around data manifold 𝐷, in data
coordinates 𝑥𝛼
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▶ Define normal coordinates 𝑦� in a neighborhood of 𝐷



Gradient ascent in 𝑦-coordinates

▶ By choosing {𝑛𝑖} orthogonal wrt 𝛾, the inverse induced metric takes the form
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and hence the update step points along the data manifold.

⇒ In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For 𝜖 ∈ (0, 1) and 𝑔 a normalizing flow with Kullback–Leibler divergence KL(𝑝, 𝑞) < 𝜖,

𝛾−1
⊥𝑖

→ 0 as 𝛿 → 0

for all 𝑖 ∈ {1, . . . , 𝑁𝑋 − 𝑁𝐷}.

⇒ For well-trained generative models, the gradient ascent update in 𝑍 stays on the
data manifold



Toy example

 

grad asc in X
grad asc in Z
x

x ′

g(z ′)



Diffeomorphic Counterfactuals with CelebA

▶ Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Task: Change classification from not blonde to blonde

▶ Top row: Counterfactual computed in base space
▶ Bottom row: Adersarial example computed in data space



Diffeomorphic Counterfactuals for regression

▶ Consider crowd-counting dataset of mall images
▶ Count number of people in the image [Ribera et al., CVPR 2019]

▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Optimize for low number of people

▶ Optimize for high number of people



Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Counterfactuals explain black-box classifiers by providing a realistic sample close to the
original but with a different classification

▶ Naive gradient ascent leads off the data manifold, yielding adversarial examples

▶ Gradient ascent in the base space of a normalizing flow leads to optimization on the
data manifold

▶ Concept be used for a wide range of different problems

▶ New areas of mathematics enter the study of neural networks
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