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= fo:R™ -R", 0eRN: parameters

e.g. fo:picture - p(cat)
» Training data
examples x — y of target function, e.g.

o . P )
» Error function

quantifies deviation between current guess fg(x) and true answer y, e.g.
&(fox),y) = (fo(x) - y)*

> Optimization procedure
minimize error over data iteratively

6 =6-1Vg ), &(fox),y)

(x,y)eD

= Very powerful recipe
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Neural networks
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A neural network is a certain way to define a family of functions fg
For x € R", a fully connected layer computes

¢ weights  —— biases
zj(x) =o(Wj-x+bj)  where W;eR™", bjeR"™, ¢:R" -R" (%)
o is a (simple) non-linear function that acts component-wise, often ReLU
ReLU(x) = max(x, 0)

The neural network iterates z

fo(x)=zpozp g0 0z1(x) (H%)
with the parameters

0={W,...,WL,b1,...,br}

Name stems from similarity of () to neurons and visualization of (%) as graph

Choose output dimension to match task, e.g. fg(x) € R for binary classifier
Compute gradient of loss w.r.t. W, b; using backpropagation



Convolutional neural networks (CNNs) [Fukushima 1980]

> Used mostly for input images: RGB pixel values on a grid G = ([0, w] X [0, h]) N 72

> Interpret convolution as sliding filter over image
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Convolutional neural networks (CNNs) [Fukushima 1980]

> Used mostly for input images: RGB pixel values on a grid G = ([0, w] X [0, h]) N 72

> Interpret convolution as sliding filter over image

> Interpret input as function

> Convolutional layer

kernel

zj(x) = o((xj* f)(x) + bj) = a( Z Ki(y —x)- f(y) + bj), where xj:G — R
yeg

Kernel has finite support, e.g. 3 x 3 or 5 X 5

Effectively: Fully connected layer with constraints on W

CNNs stack many convolutional layers

vy vy VvYyy

Higher-dimensional versions and versions on graphs exist



Deep learning

34-Tayer residual

> Stack many (usually ~ 5 — 100) NN layers to build deep neural networks
> Typically many parameters (largest model has more than 1 trillion parameters)

> Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of
images)



Deep learning

avgpool
T 1000

34-Tayer residual

> Stack many (usually ~ 5 — 100) NN layers to build deep neural networks

> Typically many parameters (largest model has more than 1 trillion parameters)

> Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of
images)

> Need various tricks to make training stable and efficient

> Use graphical processing units (GPUs) and computing clusters to run training

> Hugely successful, at the heart of the Al boom:
> Computer Vision
> Natural Language Processing
> Reinforcement Learning
> Protein Folding
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Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
> Neural networks are complicated functions
> The training process is stochastic

Geometry can help to alleviate these problems.
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Geometry of the training data

high data
density
low data
density

> Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space

> E.g. MNIST pictures lie on ~ 30-dim. submanifold of 28 x 28 = 784 dim. input space



Learned dlffeOInOl’phlSl’nS [Dinh, Krueger, Bengio, 2014]

» How to characterize the data manifold?

> Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow X

2 —

Zg——

> Diffeomorphism is given by another neural network, a normalizing flow

> Get access to the data manifold in a functional form

. . . . . . [Albergo et al. 2021]
> Used e.g. to sample field configurations in lattice field theory [Bacchio et al. 2022]
[Nicoli et al. 2023]



Explainable AI (XAI) [Review: Samek et al. 2021]

Rooster

prediction f(x

input T

Neural network classifiers lack inherent interpretability
This is in contrast to more traditional methods like linear- or physical models
For safety-critical applications this poses a serious challenge in practice

Research progress can also be impeded

vV vy VY Vvyyy

Need explanations which provide insight into the neural network decisions



Counterfactual explanations

> Counterfactual of a sample: Data point close to original but with different
classification

> Difference between original and counterfactual reveals features which led to
classification

> Example from CelebA dataset, classified as not-blonde:

original x counterfactual x’ [x — x|



Adversarial Examples

> Small perturbations can lead to misclassifications

Pblonde (n ) =0.01 but Pblonde (a ) =0.99



Adversarial Examples

> Small perturbations can lead to misclassifications

Pblonde (l) =0.01 but Pblonde (.) =0.99

> Reason: Classifier only trained on the data manifold

source class
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COUI’IteI‘faCtualS [Dombrowski, JG, Miiller, Kessel, 2022]

> Can use normalizing flows to optimize along the data manifold = counterfactuals

original counterfactual ~adversarial example
not blond blond (p=0.99)  blond (p=0.99)

generative
model g

2D — 2@ 4 Ay—l%l;—‘(x(i)) +0(\2)



Gradient ascent in base space

> Gradient ascent in Z for class k of the classifier f with learning rate A:

(41 _ 9(f g)k I 28k 1))
> Using change-of-variable under the flow:

Theorem

Gradient ascent in the base space Z is given by

D) = 1041 5710 %(xm) )

where y~1(x) = ( - ‘;Z )(g7(x)) is the inverse of the induced metric on X from Z
under the flow g.




Data coordinates

> Assume that data lies in a region S = supp(p) around data manifold D, in data
coordinates x®

o0 6
- a -2 2
Sx—{xD+x5‘xDer, X e( 2,2)}
with 6 < 1.

> Define normal coordinates y# in a neighborhood of D



Gradient ascent in y-coordinates

> By choosing {n;} orthogonal wrt y, the inverse induced metric takes the form
— v
) :

) L
) =

> The gradient ascent update g“(z(i+1)) = g“(z(i)) +A yaﬁ% + O(A2) becomes
ap Ot _ X% v Oft | IxT 4 Oft

o = oyt 0 vy Ty oy

> For yll_l — O0and ;Ti bounded we have

i o Of
ap 2t 72 B
" aE T oy ayy

and hence the update step points along the data manifold.

= In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For € € (0,1) and g a normalizing flow with Kullback-Leibler divergence KL(p, 9) < €,
yll_l -0 as 6—0

forallie {1,...,Nx = Np}.

= For well-trained generative models, the gradient ascent update in Z stays on the
data manifold



Toy example

grad asc in X
grad asc in Z




Diffeomorphic Counterfactuals with CelebA

> Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
> Flow: Glow [Kingma et al., NeurIPS 2018]

> Task: Change classification from not blonde to blonde

I BEN ALE"
‘Bh ee

'

> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Diffeomorphic Counterfactuals for regression

> Consider crowd-counting dataset of mall images

> Count number of people in the image [Ribera et al,, CVPR 2019]
» Flow: Glow [Kingma et al., NeurIPS 2018]
>

Optimize for low number of people
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Geometry in Deep Learning

—— Error Function <— Geometry

Geometry — Neural Network

optimization

!

Geometry



Symmetric learning problems

> Many machine learning problems have inherent symmetry, e.g.

rotate
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Equivariance

[Cohen, Welling, 2016]

> Equivariant neural networks build symmetry group G into network architecture:

folp™H(@)x) = 0()fo(x), g€G
e.g.

rotate

YrIomiau
Yromiau

rotate

> Requires specialized architectures — equivariant neural networks
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Spherical Convolutions [Cohen etal. 2015]

> For G = SO(3), H = SO(2), so G/H = S2, explicit implementations are available
> Consider data f : $> — R" on the sphere, e.g. pictures from fisheye cameras

> In the first layer, the group convolution becomes

(* f)(R) = /S dx ®(R71x) f(x)

> In subsequent layers, the group convolution is
@O = [ aryEIS)5m
SO(3)

> Both convolutions are in practice computed in the Fourier domain: On $? use
spherical harmonics Y,,l1 (x), on SO(3) use Wigner matrices Z),lm (R), leverage FFT

> The convolutions become pointwise multiplications

1
(% Pl = Kb fl @ x Db = > L0k,

k=-1

> After final convolution integrate over SO(3) for invariance (output in R) and over
SO(2) for equivariance (output on 52)



Equivariant networks vs. data augmentation (Gerken et al. 2022]

> To compare equivariance and data augmentation, consider semantic segmentation
of MNIST projected onto the sphere and randomly rotated:

> For data augmentation, add rotated versions of projected MNIST digits



Equivariant networks vs. data augmentation [Gerken et al. 2022]

> In this case, performance of equivariant networks cannot be reached by data

augmentation

Non-background IoU

Semantic segmentation

100 —
07 80000 0—0—0- @
60 — -
[l 4"
40 -
—©- 204k S2CNN
20 — —— 218k CNN
—— 1M CNN
—— 5.5M CNN
0 | | | | |
0 50k 100k 150k 200k 250k

Number of training images



Equivariant neural networks

Rich theory:

> Very general concepts, can be specialized to sets, graphs, grids, manifolds, ...

> Connections to many topics in pure mathematics: [Gerken et al. 2021

> representation theory
group theory
harmonic analysis
graph theory

fiber bundles

gauge theory
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> Ongoing project about robustness of equivariant networks



Equivariant neural networks

Rich theory:

> Very general concepts, can be specialized to sets, graphs, grids, manifolds, ...

> Connections to many topics in pure mathematics: [Gerken et al. 2021

> representation theory
group theory
harmonic analysis
graph theory

fiber bundles

gauge theory

YyVYyVYYVYY

> Ongoing project about robustness of equivariant networks

Important applications:

> Used in all kinds of applications:
Protein folding, Quantum Field Theory, Cosmology, Neuroscience, . ..

> Ongoing project about learning topological invariants in condensed matter physics

> Ongoing project about application to fisheye-camera images for autonomous
driving
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Conclusions

> Deep learning is a transformative technology lacking a strong theoretical basis

> Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

> Training data can be studied using differential geometry, yielding powerful insights

> Equivariant neural networks exploit symmetries of the learning problem

> New areas of mathematics enter the study of neural networks
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Neural tangent kernels Jacot, Gabriel, Hongla, 2015]

> Analytical description of infinite-width neural networks via Gaussian Processes
> Gives access to training dynamics

> Powerful tool to study geometric deep learning

Quantum Field Theory

Neural Tangent Kernels ———— Explainable Al

Geometry of

Training Data Information Geometry Equivariant Networks



Novel mathematics from deep learning research

> Deep learning can be used to aide research in pure math

nature THE SIGNATURE AND CUSP GEOMETRY
Explore content v About the journal v Publish with us v OF HYPERBOLIC KNOTS

nature > ariicles. > article ALEX DAVIES, ANDRAS JUHASZ, MARC LACKENBY, AND NENAD TOMASEV

Article | Open Access | Published: 01 December 2021

. N ABSTRACT. We introduce a new real-valued invariant called the natural slope
Advancing mathematics by gu of a hyperbolic knot in the 3-sphere, which is defined in terms of its cusp
PP geometry. We show that twice the knot signature and the natural slope differ
intuition with Al by at most a constant times the hyperbolic volume divided by the cube of
the injectivity radius. This inequality was discovered using machine learning
to detect relationships between various knot invariants. It has applications
Richard Tanburn, Peter Battaglia, Charles Blundell, Andrés Juhssz, Mare Lackenby, Geordie to Dehn surgery and to 4-ball genus. We also show a refined version of the
inequality where the upper bound is a linear function of the volume, and the
slope is corrected by terms corresponding to short geodesics that link the knot
an odd number of times.

Alex Davies |, Petar Velickovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev,

Wiliamson, Demis Hassabis & Pushmeet Kohl

Nature 600, 70-74 (2021) | Cite this article

> Simplifying polylogs using reinforcement learning [Dersy, Schwartz, Zhang, 2022]

> Exciting area that is still in its infancy



New mathematics from deep learning [Daviesetal. 2021

Process proposed in Davies et al. 2021:

Train gupewised model Find patterns via at}ribution
fiX@) = Y@) Interrogate f

Hypothesize Generate data
If: (X@) = Vi) X@), Y@),.p,
A

'
'
\ \
\

\\ Y R Alter sampling Conjecture candidate '
N >, __ distribution .
o s e -
Se~all Reformulate hypothesis ‘,,—‘
[ Mathematician steps ~ TTmme—eeooo-mm T Prove theorem
M Computational steps

Example:

> Let z be a complex polyhedron

> Let X(z) € Z2 x R? be the number of edges and vertices of z as well as volume and

surface area
> Let Y(z) be the number of faces of z
» Euler’s formula = X(z)-(-1,1,0,0) +2 = Y(z)

> Note: Deep learning approach also works for highly non-linear functions f



Normalizing flows
> Generative model ¢ which maps base space Z to data space X bijectively,
i.e.itis a diffeomorphism
> Probability distribution gz in Z is simple, e.g. uniform or normal

> Probability distribution gx in X is given by change of variables

0z
det 5

» Train by maximizing log-likelihood log gx of train data

ax(x) = qz(g7 (%))

data space X latent space Z
8 generation:
— A z~dqz
x=g(z)
f% g71 e inference:
§ i % - LN L o
B B z=g¢""(x)
Nl



RealNVP [Dinh et al., ICLR 2017]

> g isrealized as a neural network with bijective building blocks
> Network needs to be easily invertible and have a tractable Jacobian determinant
> RealNVP uses affine coupling layers

Y1:d = X1.d 0 ? 0%?
Yd+1:.D = Xd+1:D © exp(s(x1.4)) + t(x1.q) °Po ©u O

s, t:RY > RD- (deep CNNps) 0 S 0 0 0

forward backward

» The Jacobian is given by

oy ald 0 - Iy
gdf;f diag (exp(s(x1.4))) IxT

oxT

= exp ( Z s(xl;d)j)

> Alternate the parts which are modified from layer to layer

»> RealNVP uses multi-scale architecture



Eigenvalue spectrum of Jacobian

—— MNIST ——- CheXpert
1072\ CelebA  ----- Mall

Eigen values



Gauge networks (Cheng etal. 2019]

> Gauge networks: neural networks which are invariant with respect to local
changes of coordinates

Can formulate gauge networks in terms of fiber bundles

Fiber bundles (reminder)
> A bundle consists of total space E, base M and projection : E — M
> Fibers are given by Ex = 7~ 1(x)

> A section of E isamap 0 : M — E such that moo =id




Gauge networks [Cheng et al. 2019]

[Gerken et al. 2021]

Fiber bundles (reminder)

>
>
>

A bundle consists of total space E, base M and projection 7t : E — M
Fibers are given by Ex = 7~ 1(x)

A section of E isamap ¢ : M — E such that mo o = id

»

Formulate gauge symmetry in terms of principle G-bundle P over input manifold
M: Bundle P with regular right action of G on P

<:PXG— P, satisfying mnp(p<g)=mnp(p)
A gauge is a section of P
In general relativity: P is frame bundle, section of P is choice of basis in 7 M
Let V be a vector space on which G acts from the left via representation p
gr v =p(g)v
Define equivalence relation on P X V by
(pv)~p(peg,g'»v), g€GC

Feature maps are sections of associated bundle P X, V = P x V /~, with projection

m5([p, v]) = p(p)



[Cheng et al. 2019]
Gauge networks [Gerkei etal. 2021]
Can construct explicit coordinate independent convolution by using
> Exponential map
> Parallel transport by means of connection on P

For a section s of P X, V, the convolution is given by

(@s)(x) = /B AX (¥, X)5 exp, x(¥)/det(g 0

with a kernel
K : MXT M — Hom(E,, Ey),
satisfiying

K(x, k> X) = (k™ Vr(x, X)p(k)

> . . [Cohen et al. 2019]
Few concrete implementations of these concepts yet (de Haam et o] 2020]

> Gauge equivariant convolutions also exist for internal gauge symmetries, used for

. X . [Favoni et al. 2020]
lattice field theory computations [Luto et al. 2020]
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» Parallel,

For a section

with a kerng s
K exp(.)

satisfiying

» [Cohen et al. 2019]
Few co T T [de Haan et al. 2020]
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lattice field theory computations [Luo et al. 2020]
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For a section s of P X, V, the convolution is given by
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