
Geometric Deep Learning:
From Pure Math to Applications

Jan E. Gerken

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

13th April 2023
Amplitudes Group Meeting

Uppsala University

What is Geometric Deep Learning? [Bronstein et al. 2017]

?

Geometric Deep Learning = Geometry + Deep Learning

What is Geometric Deep Learning? [Bronstein et al. 2017]

?

Geometric Deep Learning = Geometry︸ ︷︷ ︸ + Deep Learning︸ ︷︷ ︸

=

Machine Learning
with neural networks

What is Geometric Deep Learning? [Bronstein et al. 2017]

?

Geometric Deep Learning = Geometry︸ ︷︷ ︸ + Deep Learning︸ ︷︷ ︸

=

Machine Learning
with neural networks

What is Geometric Deep Learning? [Bronstein et al. 2017]

?

Geometric Deep Learning = Geometry︸ ︷︷ ︸ + Deep Learning︸ ︷︷ ︸

=

Machine Learning
with neural networks

What is Geometric Deep Learning? [Bronstein et al. 2017]

?

Geometric Deep Learning = Geometry︸ ︷︷ ︸ + Deep Learning︸ ︷︷ ︸

=

Machine Learning
with neural networks

Machine learning with neural networks

▶ Neural networks

⇒ 𝑓𝜃 : R𝑚 → R𝑛 , 𝜃 ∈ R𝑁 : parameters

e.g. 𝑓𝜃 : picture ↦→ 𝑝(cat)

▶ Training data
examples 𝑥 ↦→ 𝑦 of target function, e.g.

𝒟 =

{
↦→ 1.0 , ↦→ 0.0 , . . .

}
▶ Error function

quantifies deviation between current guess 𝑓𝜃(𝑥) and true answer 𝑦, e.g.
ℰ(𝑓𝜃(𝑥), 𝑦) = (𝑓𝜃(𝑥) − 𝑦)2

▶ Optimization procedure
minimize error over data iteratively

𝜃′ = 𝜃 − 𝜂∇𝜃
∑
(𝑥,𝑦)∈𝒟

ℰ(𝑓𝜃(𝑥), 𝑦)

⇒ Very powerful recipe

Machine learning with neural networks

▶ Neural networks

⇒ 𝑓𝜃 : R𝑚 → R𝑛 , 𝜃 ∈ R𝑁 : parameters

e.g. 𝑓𝜃 : picture ↦→ 𝑝(cat)
▶ Training data

examples 𝑥 ↦→ 𝑦 of target function, e.g.

𝒟 =

{
↦→ 1.0 , ↦→ 0.0 , . . .

}

▶ Error function
quantifies deviation between current guess 𝑓𝜃(𝑥) and true answer 𝑦, e.g.

ℰ(𝑓𝜃(𝑥), 𝑦) = (𝑓𝜃(𝑥) − 𝑦)2

▶ Optimization procedure
minimize error over data iteratively

𝜃′ = 𝜃 − 𝜂∇𝜃
∑
(𝑥,𝑦)∈𝒟

ℰ(𝑓𝜃(𝑥), 𝑦)

⇒ Very powerful recipe

Machine learning with neural networks

▶ Neural networks

⇒ 𝑓𝜃 : R𝑚 → R𝑛 , 𝜃 ∈ R𝑁 : parameters

e.g. 𝑓𝜃 : picture ↦→ 𝑝(cat)
▶ Training data

examples 𝑥 ↦→ 𝑦 of target function, e.g.

𝒟 =

{
↦→ 1.0 , ↦→ 0.0 , . . .

}
▶ Error function

quantifies deviation between current guess 𝑓𝜃(𝑥) and true answer 𝑦, e.g.
ℰ(𝑓𝜃(𝑥), 𝑦) = (𝑓𝜃(𝑥) − 𝑦)2

▶ Optimization procedure
minimize error over data iteratively

𝜃′ = 𝜃 − 𝜂∇𝜃
∑
(𝑥,𝑦)∈𝒟

ℰ(𝑓𝜃(𝑥), 𝑦)

⇒ Very powerful recipe

Machine learning with neural networks

▶ Neural networks

⇒ 𝑓𝜃 : R𝑚 → R𝑛 , 𝜃 ∈ R𝑁 : parameters

e.g. 𝑓𝜃 : picture ↦→ 𝑝(cat)
▶ Training data

examples 𝑥 ↦→ 𝑦 of target function, e.g.

𝒟 =

{
↦→ 1.0 , ↦→ 0.0 , . . .

}
▶ Error function

quantifies deviation between current guess 𝑓𝜃(𝑥) and true answer 𝑦, e.g.
ℰ(𝑓𝜃(𝑥), 𝑦) = (𝑓𝜃(𝑥) − 𝑦)2

▶ Optimization procedure
minimize error over data iteratively

𝜃′ = 𝜃 − 𝜂∇𝜃
∑
(𝑥,𝑦)∈𝒟

ℰ(𝑓𝜃(𝑥), 𝑦)

⇒ Very powerful recipe

Machine learning with neural networks

▶ Neural networks

⇒ 𝑓𝜃 : R𝑚 → R𝑛 , 𝜃 ∈ R𝑁 : parameters

e.g. 𝑓𝜃 : picture ↦→ 𝑝(cat)
▶ Training data

examples 𝑥 ↦→ 𝑦 of target function, e.g.

𝒟 =

{
↦→ 1.0 , ↦→ 0.0 , . . .

}
▶ Error function

quantifies deviation between current guess 𝑓𝜃(𝑥) and true answer 𝑦, e.g.
ℰ(𝑓𝜃(𝑥), 𝑦) = (𝑓𝜃(𝑥) − 𝑦)2

▶ Optimization procedure
minimize error over data iteratively

𝜃′ = 𝜃 − 𝜂∇𝜃
∑
(𝑥,𝑦)∈𝒟

ℰ(𝑓𝜃(𝑥), 𝑦)

⇒ Very powerful recipe

Neural networks

▶ A neural network is a certain way to define a family of functions 𝑓𝜃
▶ For 𝑥 ∈ R𝑛 , a fully connected layer computes

𝑧 𝑗(𝑥) = 𝜎(𝑊𝑗 · 𝑥 + 𝑏 𝑗) where 𝑊𝑗 ∈ R𝑚×𝑛 , 𝑏 𝑗 ∈ R𝑚 , 𝜎 : R𝑚 → R𝑚
weights biases

(★)
▶ 𝜎 is a (simple) non-linear function that acts component-wise, often ReLU

ReLU(𝑥) = max(𝑥, 0)

▶ The neural network iterates 𝑧

𝑓𝜃(𝑥) = 𝑧𝐿 ◦ 𝑧𝐿−1 ◦ · · · ◦ 𝑧1(𝑥) (★★)

with the parameters

𝜃 = {𝑊1 , . . . ,𝑊𝐿 , 𝑏1 , . . . , 𝑏𝐿}
▶ Name stems from similarity of (★) to neurons and visualization of (★★) as graph

▶ Choose output dimension to match task, e.g. 𝑓𝜃(𝑥) ∈ R for binary classifier
▶ Compute gradient of loss w.r.t. 𝑊𝑗 , 𝑏 𝑗 using backpropagation

Neural networks

▶ A neural network is a certain way to define a family of functions 𝑓𝜃
▶ For 𝑥 ∈ R𝑛 , a fully connected layer computes

𝑧 𝑗(𝑥) = 𝜎(𝑊𝑗 · 𝑥 + 𝑏 𝑗) where 𝑊𝑗 ∈ R𝑚×𝑛 , 𝑏 𝑗 ∈ R𝑚 , 𝜎 : R𝑚 → R𝑚
weights biases

(★)
▶ 𝜎 is a (simple) non-linear function that acts component-wise, often ReLU

ReLU(𝑥) = max(𝑥, 0)
▶ The neural network iterates 𝑧

𝑓𝜃(𝑥) = 𝑧𝐿 ◦ 𝑧𝐿−1 ◦ · · · ◦ 𝑧1(𝑥) (★★)

with the parameters

𝜃 = {𝑊1 , . . . ,𝑊𝐿 , 𝑏1 , . . . , 𝑏𝐿}
▶ Name stems from similarity of (★) to neurons and visualization of (★★) as graph

▶ Choose output dimension to match task, e.g. 𝑓𝜃(𝑥) ∈ R for binary classifier
▶ Compute gradient of loss w.r.t. 𝑊𝑗 , 𝑏 𝑗 using backpropagation

Neural networks

▶ A neural network is a certain way to define a family of functions 𝑓𝜃
▶ For 𝑥 ∈ R𝑛 , a fully connected layer computes

𝑧 𝑗(𝑥) = 𝜎(𝑊𝑗 · 𝑥 + 𝑏 𝑗) where 𝑊𝑗 ∈ R𝑚×𝑛 , 𝑏 𝑗 ∈ R𝑚 , 𝜎 : R𝑚 → R𝑚
weights biases

(★)
▶ 𝜎 is a (simple) non-linear function that acts component-wise, often ReLU

ReLU(𝑥) = max(𝑥, 0)
▶ The neural network iterates 𝑧

𝑓𝜃(𝑥) = 𝑧𝐿 ◦ 𝑧𝐿−1 ◦ · · · ◦ 𝑧1(𝑥) (★★)

with the parameters

𝜃 = {𝑊1 , . . . ,𝑊𝐿 , 𝑏1 , . . . , 𝑏𝐿}
▶ Name stems from similarity of (★) to neurons and visualization of (★★) as graph

▶ Choose output dimension to match task, e.g. 𝑓𝜃(𝑥) ∈ R for binary classifier
▶ Compute gradient of loss w.r.t. 𝑊𝑗 , 𝑏 𝑗 using backpropagation

Convolutional neural networks (CNNs) [Fukushima 1980]

▶ Used mostly for input images: RGB pixel values on a grid 𝒢 = ([0, 𝑤] × [0, ℎ]) ∩ Z2

▶ Interpret convolution as sliding filter over image

▶ Interpret input as function 𝑓 : 𝒢 → R3

▶ Convolutional layer

𝑧 𝑗(𝑥) = 𝜎
(
(𝜅 𝑗 ∗ 𝑓)(𝑥) + 𝑏 𝑗

)
= 𝜎

(∑
𝑦∈𝒢

𝜅 𝑗(𝑦 − 𝑥) · 𝑓 (𝑦) + 𝑏 𝑗

)
, where 𝜅 𝑗 : 𝒢 → R𝑚×𝑛

kernel

▶ Kernel has finite support, e.g. 3 × 3 or 5 × 5
▶ Effectively: Fully connected layer with constraints on 𝑊

▶ CNNs stack many convolutional layers
▶ Higher-dimensional versions and versions on graphs exist

Convolutional neural networks (CNNs) [Fukushima 1980]

▶ Used mostly for input images: RGB pixel values on a grid 𝒢 = ([0, 𝑤] × [0, ℎ]) ∩ Z2

▶ Interpret convolution as sliding filter over image

▶ Interpret input as function 𝑓 : 𝒢 → R3

▶ Convolutional layer

𝑧 𝑗(𝑥) = 𝜎
(
(𝜅 𝑗 ∗ 𝑓)(𝑥) + 𝑏 𝑗

)
= 𝜎

(∑
𝑦∈𝒢

𝜅 𝑗(𝑦 − 𝑥) · 𝑓 (𝑦) + 𝑏 𝑗

)
, where 𝜅 𝑗 : 𝒢 → R𝑚×𝑛

kernel

▶ Kernel has finite support, e.g. 3 × 3 or 5 × 5

▶ Effectively: Fully connected layer with constraints on 𝑊

▶ CNNs stack many convolutional layers
▶ Higher-dimensional versions and versions on graphs exist

Convolutional neural networks (CNNs) [Fukushima 1980]

▶ Used mostly for input images: RGB pixel values on a grid 𝒢 = ([0, 𝑤] × [0, ℎ]) ∩ Z2

▶ Interpret convolution as sliding filter over image

▶ Interpret input as function 𝑓 : 𝒢 → R3

▶ Convolutional layer

𝑧 𝑗(𝑥) = 𝜎
(
(𝜅 𝑗 ∗ 𝑓)(𝑥) + 𝑏 𝑗

)
= 𝜎

(∑
𝑦∈𝒢

𝜅 𝑗(𝑦 − 𝑥) · 𝑓 (𝑦) + 𝑏 𝑗

)
, where 𝜅 𝑗 : 𝒢 → R𝑚×𝑛

kernel

▶ Kernel has finite support, e.g. 3 × 3 or 5 × 5
▶ Effectively: Fully connected layer with constraints on 𝑊

▶ CNNs stack many convolutional layers
▶ Higher-dimensional versions and versions on graphs exist

Deep learning

▶ Stack many (usually ∼ 5 − 100) NN layers to build deep neural networks
▶ Typically many parameters (largest model has more than 1 trillion parameters)
▶ Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of

images)

▶ Need various tricks to make training stable and efficient
▶ Use graphical processing units (GPUs) and computing clusters to run training
▶ Hugely successful, at the heart of the AI boom:

▶ Computer Vision
▶ Natural Language Processing
▶ Reinforcement Learning
▶ Protein Folding

.

.

.

Deep learning

▶ Stack many (usually ∼ 5 − 100) NN layers to build deep neural networks
▶ Typically many parameters (largest model has more than 1 trillion parameters)
▶ Typically trained on large datasets (e.g. TBs of text data, hundreds of millions of

images)
▶ Need various tricks to make training stable and efficient
▶ Use graphical processing units (GPUs) and computing clusters to run training
▶ Hugely successful, at the heart of the AI boom:

▶ Computer Vision
▶ Natural Language Processing
▶ Reinforcement Learning
▶ Protein Folding

.

.

.

Enter: Geometry

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Geometry

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Geometry

Geometry

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Geometry

Geometry Geometry

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Geometry

Geometry Geometry

Geometry

Enter: Geometry

Deep learning is lacking a strong theoretical foundation:
▶ Neural networks are complicated functions
▶ The training process is stochastic

Geometry can help to alleviate these problems.

Data

Neural Network Error Function

optimization

Geometry

Geometry Geometry

Geometry

Geometry of the training data

▶ Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space
▶ E.g. MNIST pictures lie on ∼ 30-dim. submanifold of 28× 28 = 784 dim. input space

Learned diffeomorphisms [Dinh, Krueger, Bengio, 2014]

▶ How to characterize the data manifold?

▶ Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow

▶ Diffeomorphism is given by another neural network, a normalizing flow

▶ Get access to the data manifold in a functional form

▶ Used e.g. to sample field configurations in lattice field theory
[Albergo et al. 2021]
[Bacchio et al. 2022]

[Nicoli et al. 2023]

Explainable AI (XAI) [Review: Samek et al. 2021]

▶ Neural network classifiers lack inherent interpretability
▶ This is in contrast to more traditional methods like linear- or physical models
▶ For safety-critical applications this poses a serious challenge in practice
▶ Research progress can also be impeded
▶ Need explanations which provide insight into the neural network decisions

Counterfactual explanations

▶ Counterfactual of a sample: Data point close to original but with different
classification

▶ Difference between original and counterfactual reveals features which led to
classification

▶ Example from CelebA dataset, classified as not-blonde:

original 𝑥 counterfactual 𝑥′ |𝑥 − 𝑥′ |

Adversarial Examples

▶ Small perturbations can lead to misclassifications

𝑝blonde

()
= 0.01 but 𝑝blonde

()
= 0.99

▶ Reason: Classifier only trained on the data manifold

Adversarial Examples

▶ Small perturbations can lead to misclassifications

𝑝blonde

()
= 0.01 but 𝑝blonde

()
= 0.99

▶ Reason: Classifier only trained on the data manifold

Counterfactuals [Dombrowski, JG, Müller, Kessel, 2022]

▶ Can use normalizing flows to optimize along the data manifold⇒ counterfactuals

original
not blond

adversarial example
blond (p≈0.99)

counterfactual
blond (p≈0.99)

Gradient ascent in base space

▶ Gradient ascent in 𝑍 for class 𝑘 of the classifier 𝑓 with learning rate 𝜆:

𝑧(𝑡+1) = 𝑧(𝑡) + 𝜆𝜕(𝑓 ◦ 𝑔)𝑘
𝜕𝑧

(𝑧(𝑡))

▶ Using change-of-variable under the flow:

Theorem
Gradient ascent in the base space 𝑍 is given by

𝑥(𝑡+1) = 𝑥(𝑡)+𝜆 𝜸−1
(𝒙(𝒕))

𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡)) + 𝒪(𝜆2)

where 𝛾−1(𝑥) =
(𝜕𝑔
𝜕𝑧

𝜕𝑔
𝜕𝑧

𝑇)
(𝑔−1(𝑥)) is the inverse of the induced metric on 𝑋 from 𝑍

under the flow 𝑔.

Data coordinates

𝑆
}

𝑋

𝐷

𝑦∥
𝑦⊥

𝛿
2

𝜎
𝑝

𝑞

▶ Assume that data lies in a region 𝑆 = supp(𝑝) around data manifold 𝐷, in data
coordinates 𝑥𝛼

𝑆𝑥 =

{
𝑥𝐷 + 𝑥𝛿

��� 𝑥𝐷 ∈ 𝐷𝑥 , 𝑥
𝛼
𝛿 ∈

(
− 𝛿

2 ,
𝛿
2

)}
with 𝛿 ≪ 1.

▶ Define normal coordinates 𝑦𝜇 in a neighborhood of 𝐷

Gradient ascent in 𝑦-coordinates

▶ By choosing {𝑛𝑖} orthogonal wrt 𝛾, the inverse induced metric takes the form

𝛾𝜇𝜈(𝑦) =
©­­­­­«
𝛾−1
𝐷
(𝑦)

𝛾−1
⊥1

. . .

𝛾−1
⊥𝑁𝑋−𝑁𝐷

ª®®®®®¬

𝜇𝜈

.

▶ The gradient ascent update 𝑔𝛼(𝑧(𝑖+1)) = 𝑔𝛼(𝑧(𝑖)) + 𝜆 𝛾𝛼𝛽 𝜕 𝑓𝑡
𝜕𝑥𝛽
+ 𝒪(𝜆2) becomes

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
=

𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥
+ 𝜕𝑥𝛼

𝜕𝑦 𝑖⊥
𝛾−1
⊥𝑖

𝜕 𝑓𝑡

𝜕𝑦 𝑖⊥

▶ For 𝛾−1
⊥𝑖
→ 0 and 𝜕𝑥

𝜕𝑦⊥
bounded we have

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
→ 𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥

and hence the update step points along the data manifold.

⇒ In this case, obtain counterfactuals, not adversarial examples!

The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For 𝜖 ∈ (0, 1) and 𝑔 a normalizing flow with Kullback–Leibler divergence KL(𝑝, 𝑞) < 𝜖,

𝛾−1
⊥𝑖
→ 0 as 𝛿→ 0

for all 𝑖 ∈ {1, . . . , 𝑁𝑋 − 𝑁𝐷}.

⇒ For well-trained generative models, the gradient ascent update in 𝑍 stays on the
data manifold

Toy example

grad asc in X
grad asc in Z
x

x ′

g(z ′)

Diffeomorphic Counterfactuals with CelebA

▶ Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Task: Change classification from not blonde to blonde

▶ Top row: Counterfactual computed in base space
▶ Bottom row: Adersarial example computed in data space

Diffeomorphic Counterfactuals for regression

▶ Consider crowd-counting dataset of mall images
▶ Count number of people in the image [Ribera et al., CVPR 2019]

▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Optimize for low number of people

▶ Optimize for high number of people

Geometry in Deep Learning

Data

Neural Network Error Function

optimization

Geometry

Geometry Geometry

Geometry

Symmetric learning problems

▶ Many machine learning problems have inherent symmetry, e.g.

rotate−−−−−−−−−→

▶ Naive approach: data augmentation

Symmetric learning problems

▶ Many machine learning problems have inherent symmetry, e.g.

rotate−−−−−−−−−→

▶ Naive approach: data augmentation

Equivariance [Cohen, Welling, 2016]

▶ Equivariant neural networks build symmetry group 𝐺 into network architecture:

𝑓𝜃(𝜌−1(𝑔)𝑥) = 𝜎(𝑔) 𝑓𝜃(𝑥) , 𝑔 ∈ 𝐺
e.g.

▶ Requires specialized architectures→ equivariant neural networks

Spherical Convolutions [Cohen et al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras

▶ In the first layer, the group convolution becomes

(𝜅 ∗ 𝑓)(𝑅) =
∫
𝑆2

d𝑥 𝜅(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙

𝑚(𝑥), on SO(3) use Wigner matrices𝒟 𝑙
𝑚𝑛(𝑅), leverage FFT

▶ The convolutions become pointwise multiplications

(𝜅 ∗ 𝑓)𝑙𝑚𝑛 = 𝜅𝑙𝑚 𝑓 𝑙𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)

Spherical Convolutions [Cohen et al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras
▶ In the first layer, the group convolution becomes

(𝜅 ∗ 𝑓)(𝑅) =
∫
𝑆2

d𝑥 𝜅(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙

𝑚(𝑥), on SO(3) use Wigner matrices𝒟 𝑙
𝑚𝑛(𝑅), leverage FFT

▶ The convolutions become pointwise multiplications

(𝜅 ∗ 𝑓)𝑙𝑚𝑛 = 𝜅𝑙𝑚 𝑓 𝑙𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)

Spherical Convolutions [Cohen et al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras
▶ In the first layer, the group convolution becomes

(𝜅 ∗ 𝑓)(𝑅) =
∫
𝑆2

d𝑥 𝜅(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙

𝑚(𝑥), on SO(3) use Wigner matrices𝒟 𝑙
𝑚𝑛(𝑅), leverage FFT

▶ The convolutions become pointwise multiplications

(𝜅 ∗ 𝑓)𝑙𝑚𝑛 = 𝜅𝑙𝑚 𝑓 𝑙𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)

Spherical Convolutions [Cohen et al. 2018]

▶ For 𝐺 = SO(3), 𝐻 = SO(2), so 𝐺/𝐻 = 𝑆2, explicit implementations are available
▶ Consider data 𝑓 : 𝑆2 → R𝑛 on the sphere, e.g. pictures from fisheye cameras
▶ In the first layer, the group convolution becomes

(𝜅 ∗ 𝑓)(𝑅) =
∫
𝑆2

d𝑥 𝜅(𝑅−1𝑥) 𝑓 (𝑥)

▶ In subsequent layers, the group convolution is

(𝜓 ∗ 𝑔)(𝑆) =
∫

SO(3)
d𝑅𝜓(𝑅−1𝑆)𝑔(𝑅)

▶ Both convolutions are in practice computed in the Fourier domain: On 𝑆2 use
spherical harmonics 𝑌 𝑙

𝑚(𝑥), on SO(3) use Wigner matrices𝒟 𝑙
𝑚𝑛(𝑅), leverage FFT

▶ The convolutions become pointwise multiplications

(𝜅 ∗ 𝑓)𝑙𝑚𝑛 = 𝜅𝑙𝑚 𝑓 𝑙𝑛 (𝜓 ∗ 𝑔)𝑙𝑚𝑛 =

𝑙∑
𝑘=−𝑙

𝑓 𝑙
𝑚𝑘

𝜓𝑙
𝑘𝑛

▶ After final convolution integrate over SO(3) for invariance (output in R𝑐) and over
SO(2) for equivariance (output on 𝑆2)

Equivariant networks vs. data augmentation [Gerken et al. 2022]

▶ To compare equivariance and data augmentation, consider semantic segmentation
of MNIST projected onto the sphere and randomly rotated:

▶ For data augmentation, add rotated versions of projected MNIST digits

Equivariant networks vs. data augmentation [Gerken et al. 2022]

▶ In this case, performance of equivariant networks cannot be reached by data
augmentation

0 50k 100k 150k 200k 250k
0

20

40

60

80

100

Number of training images

N
on

-b
ac

kg
ro

un
d

Io
U

Semantic segmentation

204k S2CNN
218k CNN
1M CNN
5.5M CNN

Equivariant neural networks

Rich theory:
▶ Very general concepts, can be specialized to sets, graphs, grids, manifolds, . . .
▶ Connections to many topics in pure mathematics: [

Gerken et al. 2021
]

▶ representation theory
▶ group theory
▶ harmonic analysis
▶ graph theory
▶ fiber bundles
▶ gauge theory

▶ Ongoing project about robustness of equivariant networks

Important applications:
▶ Used in all kinds of applications:

Protein folding, Quantum Field Theory, Cosmology, Neuroscience, . . .

▶ Ongoing project about learning topological invariants in condensed matter physics

▶ Ongoing project about application to fisheye-camera images for autonomous
driving

Equivariant neural networks

Rich theory:
▶ Very general concepts, can be specialized to sets, graphs, grids, manifolds, . . .
▶ Connections to many topics in pure mathematics: [

Gerken et al. 2021
]

▶ representation theory
▶ group theory
▶ harmonic analysis
▶ graph theory
▶ fiber bundles
▶ gauge theory

▶ Ongoing project about robustness of equivariant networks

Important applications:
▶ Used in all kinds of applications:

Protein folding, Quantum Field Theory, Cosmology, Neuroscience, . . .

▶ Ongoing project about learning topological invariants in condensed matter physics

▶ Ongoing project about application to fisheye-camera images for autonomous
driving

Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Training data can be studied using differential geometry, yielding powerful insights

▶ Equivariant neural networks exploit symmetries of the learning problem

▶ New areas of mathematics enter the study of neural networks

Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Training data can be studied using differential geometry, yielding powerful insights

▶ Equivariant neural networks exploit symmetries of the learning problem

▶ New areas of mathematics enter the study of neural networks

Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Training data can be studied using differential geometry, yielding powerful insights

▶ Equivariant neural networks exploit symmetries of the learning problem

▶ New areas of mathematics enter the study of neural networks

Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Training data can be studied using differential geometry, yielding powerful insights

▶ Equivariant neural networks exploit symmetries of the learning problem

▶ New areas of mathematics enter the study of neural networks

Conclusions

▶ Deep learning is a transformative technology lacking a strong theoretical basis

▶ Geometry can help in several key parts of the learning process, bringing abstract
mathematics to practical applications

▶ Training data can be studied using differential geometry, yielding powerful insights

▶ Equivariant neural networks exploit symmetries of the learning problem

▶ New areas of mathematics enter the study of neural networks

Collaborators

Daniel Persson Klaus-Robert Müller Pan Kessel

Christoffer Petersson Fredrik Ohlsson Hampus Linander

Ann-Kathrin Dombrowsik Oscar Carlsson Jimmy Aronsson

Thank you!

Appendix

Neural tangent kernels [Jacot, Gabriel, Hongla, 2018]

▶ Analytical description of infinite-width neural networks via Gaussian Processes
▶ Gives access to training dynamics
▶ Powerful tool to study geometric deep learning

Neural tangent kernels [Jacot, Gabriel, Hongla, 2018]

▶ Analytical description of infinite-width neural networks via Gaussian Processes
▶ Gives access to training dynamics
▶ Powerful tool to study geometric deep learning

Neural Tangent Kernels

Information Geometry Equivariant Networks
Geometry of

Training Data

Neural tangent kernels [Jacot, Gabriel, Hongla, 2018]

▶ Analytical description of infinite-width neural networks via Gaussian Processes
▶ Gives access to training dynamics
▶ Powerful tool to study geometric deep learning

Neural Tangent Kernels

Information Geometry Equivariant Networks
Geometry of

Training Data

Explainable AI

Neural tangent kernels [Jacot, Gabriel, Hongla, 2018]

▶ Analytical description of infinite-width neural networks via Gaussian Processes
▶ Gives access to training dynamics
▶ Powerful tool to study geometric deep learning

Neural Tangent Kernels

Information Geometry Equivariant Networks
Geometry of

Training Data

Quantum Field Theory

Explainable AI

Novel mathematics from deep learning research

▶ Deep learning can be used to aide research in pure math

▶ Simplifying polylogs using reinforcement learning [Dersy, Schwartz, Zhang, 2022]

▶ Exciting area that is still in its infancy

New mathematics from deep learning [Davies et al. 2021]

Process proposed in Davies et al. 2021:

Example:
▶ Let 𝑧 be a complex polyhedron
▶ Let 𝑋(𝑧) ∈ Z2 × R2 be the number of edges and vertices of 𝑧 as well as volume and

surface area
▶ Let 𝑌(𝑧) be the number of faces of 𝑧
▶ Euler’s formula⇒ 𝑋(𝑧) · (−1, 1, 0, 0) + 2 = 𝑌(𝑧)
▶ Note: Deep learning approach also works for highly non-linear functions 𝑓

Normalizing flows

▶ Generative model 𝑔 which maps base space 𝑍 to data space 𝑋 bĳectively,
i.e. it is a diffeomorphism

▶ Probability distribution 𝑞𝑍 in 𝑍 is simple, e.g. uniform or normal
▶ Probability distribution 𝑞𝑋 in 𝑋 is given by change of variables

𝑞𝑋 (𝑥) = 𝑞𝑍(𝑔−1(𝑥))
����det 𝜕𝑧

𝜕𝑥

����
▶ Train by maximizing log-likelihood log 𝑞𝑋 of train data

data space 𝑋 latent space 𝑍

𝑔
←−−−−−

generation:
𝑧 ∼ 𝑞𝑍
𝑥 = 𝑔(𝑧)

𝑔−1

−−−−−−−→
inference:
𝑥 ∼ 𝑞𝑋
𝑧 = 𝑔−1(𝑥)

RealNVP [Dinh et al., ICLR 2017]

▶ 𝑔 is realized as a neural network with bĳective building blocks
▶ Network needs to be easily invertible and have a tractable Jacobian determinant
▶ RealNVP uses affine coupling layers

𝑦1:𝑑 = 𝑥1:𝑑
𝑦𝑑+1:𝐷 = 𝑥𝑑+1:𝐷 ⊙ exp(𝑠(𝑥1:𝑑)) + 𝑡(𝑥1:𝑑)

𝑠, 𝑡 : R𝑑 → R𝐷−𝑑 (deep CNNs)
forward backward

▶ The Jacobian is given by

𝜕𝑦

𝜕𝑥𝑇
=

[
1𝑑 0

𝜕𝑦𝑑+1:𝐷
𝜕𝑥𝑇1:𝑑

diag
(
exp(𝑠(𝑥1:𝑑))

)] ⇒
���� 𝜕𝑦𝜕𝑥𝑇

���� = exp
(∑

𝑗

𝑠(𝑥1:𝑑)𝑗
)

▶ Alternate the parts which are modified from layer to layer

▶ RealNVP uses multi-scale architecture

Eigenvalue spectrum of Jacobian

λmax λmin
Eigen values

10−8

10−6

10−4

10−2

100
λ /

λ m
ax
MNIST
CelebA

CheXpert
Mall

Gauge networks [Cheng et al. 2019]

▶ Gauge networks: neural networks which are invariant with respect to local
changes of coordinates

Can formulate gauge networks in terms of fiber bundles

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, baseℳ and projection 𝜋 : 𝐸→ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 :ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id

Gauge networks [Cheng et al. 2019]
[Gerken et al. 2021]

Fiber bundles (reminder)
▶ A bundle consists of total space 𝐸, baseℳ and projection 𝜋 : 𝐸→ℳ
▶ Fibers are given by 𝐸𝑥 = 𝜋−1(𝑥)
▶ A section of 𝐸 is a map 𝜎 :ℳ → 𝐸 such that 𝜋 ◦ 𝜎 = id

▶ Formulate gauge symmetry in terms of principle 𝐺-bundle 𝑃 over input manifold
ℳ: Bundle 𝑃 with regular right action of 𝐺 on 𝑃

⊳ : 𝑃 × 𝐺→ 𝑃 , satisfying 𝜋𝑃(𝑝 ⊳ 𝑔) = 𝜋𝑃(𝑝)
▶ A gauge is a section of 𝑃

▶ In general relativity: 𝑃 is frame bundle, section of 𝑃 is choice of basis in 𝒯ℳ
▶ Let 𝑉 be a vector space on which 𝐺 acts from the left via representation 𝜌

𝑔 ⊲ 𝑣 = 𝜌(𝑔)𝑣
▶ Define equivalence relation on 𝑃 ×𝑉 by

(𝑝, 𝑣) ∼𝜌 (𝑝 ⊳ 𝑔, 𝑔−1 ⊲ 𝑣) , 𝑔 ∈ 𝐺
▶ Feature maps are sections of associated bundle 𝑃 ×𝜌 𝑉 = 𝑃 ×𝑉/∼𝜌 with projection

𝜋𝜌([𝑝, 𝑣]) = 𝜋𝑃(𝑝)

Gauge networks [Cheng et al. 2019]
[Gerken et al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 𝜅(𝑥, 𝑋)𝑠 |exp𝑥 𝑋
(𝑥)

√
det(𝑔ℳ)

with a kernel

𝜅 :ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸𝜂) ,
satisfiying

𝜅(𝑥, 𝑘 ⊲ 𝑋) = 𝜂(𝑘−1)𝜅(𝑥, 𝑋)𝜌(𝑘)

▶ Few concrete implementations of these concepts yet [Cohen et al. 2019]
[de Haan et al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et al. 2020]

[Luo et al. 2020]

Gauge networks [Cheng et al. 2019]
[Gerken et al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 𝜅(𝑥, 𝑋)𝑠 |exp𝑥 𝑋
(𝑥)

√
det(𝑔ℳ)

with a kernel

𝜅 :ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸𝜂) ,
satisfiying

𝜅(𝑥, 𝑘 ⊲ 𝑋) = 𝜂(𝑘−1)𝜅(𝑥, 𝑋)𝜌(𝑘)

▶ Few concrete implementations of these concepts yet [Cohen et al. 2019]
[de Haan et al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et al. 2020]

[Luo et al. 2020]

Gauge networks [Cheng et al. 2019]
[Gerken et al. 2021]

Can construct explicit coordinate independent convolution by using
▶ Exponential map
▶ Parallel transport by means of connection on 𝑃

For a section 𝑠 of 𝑃 ×𝜌 𝑉 , the convolution is given by

(Φ𝑠)(𝑥) =
∫
𝐵𝑅

d𝑋 𝜅(𝑥, 𝑋)𝑠 |exp𝑥 𝑋
(𝑥)

√
det(𝑔ℳ)

with a kernel

𝜅 :ℳ ×𝒯ℳ → Hom(𝐸𝜌 , 𝐸𝜂) ,
satisfiying

𝜅(𝑥, 𝑘 ⊲ 𝑋) = 𝜂(𝑘−1)𝜅(𝑥, 𝑋)𝜌(𝑘)

▶ Few concrete implementations of these concepts yet [Cohen et al. 2019]
[de Haan et al. 2020]

▶ Gauge equivariant convolutions also exist for internal gauge symmetries, used for
lattice field theory computations [Favoni et al. 2020]

[Luo et al. 2020]

	Appendix
	Appendix

