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Geometric Deep Learning



Geometry of the training data

▶ Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space
▶ E.g. MNIST pictures lie on ∼ 30-dim. submanifold of 28× 28 = 784 dim. input space



Learned diffeomorphisms [Dinh, Krueger, Bengio, 2014]

▶ How to characterize the data manifold?

▶ Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow

▶ Diffeomorphism is given by another neural network, a normalizing flow

▶ Get access to the data manifold in a functional form

▶ Connections to shape matching [Jansson, Modin, 2022]

▶ Connections to optimal transport
[Chen, Karlsson, Ringh, 2021]

[Bauer, Joshi, Modin, 2017]
[Onken, Fung, Li, Ruthotto 2020]



Explainable AI (XAI) [Review: Samek et al. 2021]

▶ Neural network classifiers lack inherent interpretability
▶ This is in contrast to more traditional methods like linear- or physical models
▶ For safety-critical applications this poses a serious challenge in practice
▶ Research progress can also be impeded
▶ Need explanations which provide insight into the neural network decisions



Saliency maps



Clever Hans Effect [Lapuschkin et al., Nat Commun 2019]



Clever Hans



Counterfactual explanations

▶ Counterfactual of a sample: Data point close to original but with different
classification

▶ Difference between original and counterfactual reveals features which led to
classification

▶ Example from CelebA dataset, classified as not-blonde:

original 𝑥 counterfactual 𝑥′ |𝑥 − 𝑥′ |



Adversarial Examples

▶ Small perturbations can lead to misclassifications

𝑝blonde

( )
= 0.01 but 𝑝blonde

( )
= 0.99

▶ Reason: Classifier only trained on the data manifold
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Counterfactuals [Dombrowski, JG, Müller, Kessel, 2022]

▶ Can use normalizing flows to optimize along the data manifold⇒ counterfactuals



Gradient ascent in base space

▶ Gradient ascent in 𝑍 for class 𝑘 of the classifier 𝑓 with learning rate 𝜆:

𝑧(𝑡+1) = 𝑧(𝑡) + 𝜆𝜕( 𝑓 ◦ 𝑔)𝑘
𝜕𝑧

(𝑧(𝑡))

▶ Using change-of-variable under the flow:

Theorem
Gradient ascent in the base space 𝑍 is given by

𝑥(𝑡+1) = 𝑥(𝑡)+𝜆 𝜸−1
(𝒙(𝒕))

𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡)) + 𝒪(𝜆2)

where 𝛾−1(𝑥) =
( 𝜕𝑔
𝜕𝑧

𝜕𝑔
𝜕𝑧

𝑇 )
(𝑔−1(𝑥)) is the inverse of the induced metric on 𝑋 from 𝑍

under the flow 𝑔.



Data coordinates
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▶ Assume that data lies in a region 𝑆 = supp(𝑝) around data manifold 𝐷, in data
coordinates 𝑥𝛼

𝑆𝑥 =

{
𝑥𝐷 + 𝑥𝛿

��� 𝑥𝐷 ∈ 𝐷𝑥 , 𝑥
𝛼
𝛿 ∈

(
− 𝛿

2 ,
𝛿
2

)}
with 𝛿 ≪ 1.

▶ Define normal coordinates 𝑦𝜇 in a neighborhood of 𝐷



Gradient ascent in 𝑦-coordinates

▶ By choosing {𝑛𝑖} orthogonal wrt 𝛾, the inverse induced metric takes the form

𝛾𝜇𝜈(𝑦) =
©­­­­­«
𝛾−1
𝐷
(𝑦)

𝛾−1
⊥1

. . .

𝛾−1
⊥𝑁𝑋−𝑁𝐷

ª®®®®®¬

𝜇𝜈

.

▶ The gradient ascent update 𝑔𝛼(𝑧(𝑖+1)) = 𝑔𝛼(𝑧(𝑖)) + 𝜆 𝛾𝛼𝛽 𝜕 𝑓𝑡
𝜕𝑥𝛽
+ 𝒪(𝜆2) becomes

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
=

𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥
+ 𝜕𝑥𝛼

𝜕𝑦 𝑖⊥
𝛾−1
⊥𝑖

𝜕 𝑓𝑡

𝜕𝑦 𝑖⊥

▶ For 𝛾−1
⊥𝑖
→ 0 and 𝜕𝑥

𝜕𝑦⊥
bounded we have

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
→ 𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥

and hence the update step points along the data manifold.

⇒ In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For 𝜖 ∈ (0, 1) and 𝑔 a normalizing flow with Kullback–Leibler divergence KL(𝑝, 𝑞) < 𝜖,

𝛾−1
⊥𝑖
→ 0 as 𝛿→ 0

for all 𝑖 ∈ {1, . . . , 𝑁𝑋 − 𝑁𝐷}.

⇒ For well-trained generative models, the gradient ascent update in 𝑍 stays on the
data manifold



Toy example
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Diffeomorphic Counterfactuals with CelebA

▶ Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Task: Change classification from not blonde to blonde

▶ Top row: Counterfactual computed in base space
▶ Bottom row: Adersarial example computed in data space



Approximately Diffeomorphic Counterfactuals with CelebA-HQ

▶ For general generating models, inversion not exact (𝑥̃ = 𝑔(𝑧0) ≠ 𝑥0)
▶ Approximate diffeomorphic counterfactuals can be generated for

high-dimensional datasets (1024 × 1024 pixels for CelebA-HQ)
▶ Use StyleGAN trained on CelebA-HQ [Karras et al., IEEE/CVF 2019]

▶ Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al., CVPR 2022]



Diffeomorphic Counterfactuals for regression

▶ Consider crowd-counting dataset of mall images
▶ Count number of people in the image [Ribera et al., CVPR 2019]

▶ Flow: Glow [Kingma et al., NeurIPS 2018]

▶ Optimize for low number of people

▶ Optimize for high number of people



Paper

Diffeomorphic Counterfactuals with Generative Models
arXiv: 2206.05075

Accepted at IEEE PAMI

Thank you!



Appendix



Normalizing flows

▶ Generative model 𝑔 which maps base space 𝑍 to data space 𝑋 bĳectively,
i.e. it is a diffeomorphism

▶ Probability distribution 𝑞𝑍 in 𝑍 is simple, e.g. uniform or normal
▶ Probability distribution 𝑞𝑋 in 𝑋 is given by change of variables

𝑞𝑋 (𝑥) = 𝑞𝑍(𝑔−1(𝑥))
����det 𝜕𝑧

𝜕𝑥

����
▶ Train by maximizing log-likelihood log 𝑞𝑋 of train data

data space 𝑋 latent space 𝑍

𝑔
←−−−−−

generation:
𝑧 ∼ 𝑞𝑍
𝑥 = 𝑔(𝑧)

𝑔−1

−−−−−−−→
inference:
𝑥 ∼ 𝑞𝑋
𝑧 = 𝑔−1(𝑥)



RealNVP [Dinh et al., ICLR 2017]

▶ 𝑔 is realized as a neural network with bĳective building blocks
▶ Network needs to be easily invertible and have a tractable Jacobian determinant
▶ RealNVP uses affine coupling layers

𝑦1:𝑑 = 𝑥1:𝑑
𝑦𝑑+1:𝐷 = 𝑥𝑑+1:𝐷 ⊙ exp(𝑠(𝑥1:𝑑)) + 𝑡(𝑥1:𝑑)

𝑠, 𝑡 : R𝑑 → R𝐷−𝑑 (deep CNNs)
forward backward

▶ The Jacobian is given by

𝜕𝑦

𝜕𝑥𝑇
=

[
1𝑑 0

𝜕𝑦𝑑+1:𝐷
𝜕𝑥𝑇1:𝑑

diag
(
exp(𝑠(𝑥1:𝑑))

) ] ⇒
���� 𝜕𝑦𝜕𝑥𝑇

���� = exp
(∑

𝑗

𝑠(𝑥1:𝑑)𝑗
)

▶ Alternate the parts which are modified from layer to layer

▶ RealNVP uses multi-scale architecture



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For 𝜖 ∈ (0, 1) and 𝑔 a normalizing flow with Kullback–Leibler divergence KL(𝑝, 𝑞) < 𝜖,

𝛾−1
⊥𝑖
→ 0 as 𝛿→ 0

for all 𝑖 ∈ {1, . . . , 𝑁𝑋 − 𝑁𝐷}.

Theorem (Approximately Diffeomorphic Counterfactuals)

If 𝑔 : 𝑍→ 𝑋 is a generative model with 𝐷 ⊂ 𝑔(𝑍) and image 𝑔(𝑍)which extends in any
non-singular orthogonal direction 𝑦 𝑖⊥ to regions outside of 𝐷 of low probability
𝑝(𝑥) ≪ 1,

𝛾−1
⊥𝑖
→ 0

for 𝛿→ 0 for all non-singular orthogonal directions 𝑦 𝑖⊥.

⇒ For well-trained generative models, the gradient ascent update in 𝑍 stays on the
data manifold



Sketch of proof (flow-case)

▶ For flows 𝑔 with KL(𝑝, 𝑞) < 𝜖, almost all probability mass is concentrated in
𝑆 = supp(𝑝)

0 < 1 − 𝜖 <

∫
𝑆𝑥

𝑞𝑋 (𝑥)d𝑥

=

∫
𝑆𝑥

𝑞𝑍(𝑔−1(𝑥))
���� 𝜕𝑧𝑎𝜕𝑥𝛼

����d𝑥
=

∫
𝐷𝑦

√
|𝛾𝐷 |

𝑁𝑋−𝑁𝐷∏
𝑖=1

∫ 𝛿/2

−𝛿/2

√
|𝛾⊥𝑖 | 𝑞𝑍(𝑧(𝑦))d𝑦 𝑖⊥ d𝑦∥

▶ When 𝛿→ 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

▶ Hence, the metric 𝛾⊥𝑖 has to diverge, i.e. 𝛾−1
⊥𝑖
→ 0.



Eigenvalue spectrum of Jacobian

λmax λmin
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Quantitative evaluation

▶ Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not
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▶ The ground truth classes for the ten nearest neighbors matches the target values of
the counterfactuals more often for Diffeomorphic Counterfactuals then for
adversarials
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