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Geometry of the training data

high data
density
low data
density

> Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space

> E.g. MNIST pictures lie on ~ 30-dim. submanifold of 28 x 28 = 784 dim. input space



Learned dlffeOInOl’phlSl’nS [Dinh, Krueger, Bengio, 2014]

» How to characterize the data manifold?

> Can learn a diffeomorphism between a simple distribution and data distribution

normalizing flow

v

Diffeomorphism is given by another neural network, a normalizing flow

> Get access to the data manifold in a functional form

v

Connections to shape matching Jansson, Modin, 2022]

. . [Chen, Karlsson, Ringh, 2021]
» Connections to 0pt1ma1 transport [Bauer, Joshi, Modin, 2017
[Onken, Fung, Li, Ruthotto 2020]



Explainable AI (XAI) [Review: Samek et al. 2021]

Rooster

prediction f(x

input T

Neural network classifiers lack inherent interpretability
This is in contrast to more traditional methods like linear- or physical models
For safety-critical applications this poses a serious challenge in practice

Research progress can also be impeded

vV vy VY Vvyyy

Need explanations which provide insight into the neural network decisions
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[Lapuschkin et al., Nat Commun 2019]

Clever Hans Effect

Artificial picture of a car

]

Horse-picture from Pascal VOC data set

Source tag
present

|

Classified
as horse

No source
tag present

|

Not classified
as horse
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Counterfactual explanations

> Counterfactual of a sample: Data point close to original but with different
classification

> Difference between original and counterfactual reveals features which led to
classification

> Example from CelebA dataset, classified as not-blonde:

original x counterfactual x’ [x — x|



Adversarial Examples

> Small perturbations can lead to misclassifications

Pblonde (n ) =0.01 but Pblonde (a ) =0.99



Adversarial Examples

> Small perturbations can lead to misclassifications

Pblonde (l) =0.01 but Pblonde (.) =0.99

> Reason: Classifier only trained on the data manifold

source class
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COUI’IteI‘faCtualS [Dombrowski, JG, Miiller, Kessel, 2022]

> Can use normalizing flows to optimize along the data manifold = counterfactuals

generative classifier f
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Gradient ascent in base space

> Gradient ascent in Z for class k of the classifier f with learning rate A:

(41 _ 9(f g)k I 28k 1))
> Using change-of-variable under the flow:

Theorem

Gradient ascent in the base space Z is given by

D) = 1041 5710 %(xm) )

where y~1(x) = ( - ‘;Z )(g7(x)) is the inverse of the induced metric on X from Z
under the flow g.




Data coordinates

> Assume that data lies in a region S = supp(p) around data manifold D, in data
coordinates x®

o0 6
- a -2 2
Sx—{xD+x5‘xDer, X e( 2,2)}
with 6 < 1.

> Define normal coordinates y# in a neighborhood of D



Gradient ascent in y-coordinates

> By choosing {n;} orthogonal wrt y, the inverse induced metric takes the form
— v
) :
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> The gradient ascent update g“(z(i+1)) = g“(z(i)) +A yaﬁ% + O(A2) becomes
ap Ot _ X% v Oft | IxT 4 Oft

o = oyt 0 vy Ty oy

> For yll_l — O0and ;Ti bounded we have
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and hence the update step points along the data manifold.

= In this case, obtain counterfactuals, not adversarial examples!



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For € € (0,1) and g a normalizing flow with Kullback-Leibler divergence KL(p, 9) < €,
yll_l -0 as 6—0

forallie {1,...,Nx = Np}.

= For well-trained generative models, the gradient ascent update in Z stays on the
data manifold



Toy example

grad asc in X
grad asc in Z




Diffeomorphic Counterfactuals with CelebA

> Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
> Flow: Glow [Kingma et al., NeurIPS 2018]

> Task: Change classification from not blonde to blonde
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> Top row: Counterfactual computed in base space

> Bottom row: Adersarial example computed in data space



Approximately Diffeomorphic Counterfactuals with CelebA-HQ

> For general generating models, inversion not exact (¥ = g(zg) # xo)

> Approximate diffeomorphic counterfactuals can be generated for
high-dimensional datasets (1024 x 1024 pixels for CelebA-HQ)

> Use StyleGAN trained on CelebA-HQ [Karras et al,, TEEE/CVF 2019]
> Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al,, CVPR 2022]
#
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Diffeomorphic Counterfactuals for regression

> Consider crowd-counting dataset of mall images

> Count number of people in the image [Ribera et al,, CVPR 2019]
» Flow: Glow [Kingma et al., NeurIPS 2018]
>

Optimize for low number of people
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Paper

Diffeomorphic Counterfactuals with Generative Models
arXiv: 2206.05075
Accepted at IEEE PAMI
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Thank you!



Appendix




Normalizing flows
> Generative model ¢ which maps base space Z to data space X bijectively,
i.e.itis a diffeomorphism
> Probability distribution gz in Z is simple, e.g. uniform or normal

> Probability distribution gx in X is given by change of variables

0z
det 5

» Train by maximizing log-likelihood log gx of train data

ax(x) = qz(g7 (%))

data space X latent space Z
8 generation:
— A z~dqz
x=g(z)
f% g71 e inference:
§ i % - LN L o
B B z=g¢""(x)
Nl



RealNVP [Dinh et al., ICLR 2017]

> g isrealized as a neural network with bijective building blocks
> Network needs to be easily invertible and have a tractable Jacobian determinant
> RealNVP uses affine coupling layers

Y1:d = X1.d 0 ? 0%?
Yd+1:.D = Xd+1:D © exp(s(x1.4)) + t(x1.q) °Po ©u O

s, t:RY > RD- (deep CNNps) 0 S 0 0 0

forward backward

» The Jacobian is given by

oy ald 0 - Iy
gdf;f diag (exp(s(x1.4))) IxT

oxT

= exp ( Z s(xl;d)j)

> Alternate the parts which are modified from layer to layer

»> RealNVP uses multi-scale architecture



The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For € € (0,1) and g a normalizing flow with Kullback-Leibler divergence KL(p, 9) < €,
yLl -0 as 6—0

forallie {1,...,Nx — Np}.

Theorem (Approximately Diffeomorphic Counterfactuals)

If ¢ : Z — X is a generative model with D C ¢(Z) and image ¢(Z) which extends in any
non-singular orthogonal direction i to regions outside of D of low probability
px) <1,

7/111 — 0

for 6 — 0 for all non-singular orthogonal directions yi.

= For well-trained generative models, the gradient ascent update in Z stays on the
data manifold



Sketch of proof (flow-case)

> For flows g with KL(p, q) < €, almost all probability mass is concentrated in
S = supp(p)

0<1—e</ gx(x)dx
Sx

- / 42(571(x)
Sx

Nx—-Np

=/Dymg

dx

6/2 .
/ § JIvilazw) i dy,
—

> When 6 — 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

2=
ox«

> Hence, the metric y; has to diverge, i.e. yLl — 0.



Eigenvalue spectrum of Jacobian

—— MNIST ——- CheXpert
1072\ CelebA  ----- Mall

Eigen values



Quantitative evaluation

> Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not

I original images B grad ascin X B grad asc in Z
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> The ground truth classes for the ten nearest neighbors matches the target values of
the counterfactuals more often for Diffeomorphic Counterfactuals then for
adversarials
I original images A grad ascin X B8 grad ascin Z
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