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Geometry of the training data

▶ Manifold Hypothesis: Data lies on low-dim. submanifold of high-dim. input space
▶ E.g. MNIST pictures lie on ∼ 30-dim. submanifold of 28× 28 = 784 dim. input space
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Explainable AI



Explainable AI (XAI)

▶ Neural network classifiers lack inherent interpretability
▶ This is in contrast to more traditional methods like linear- or physical models
▶ For safety-critical applications this poses a serious challenge in practice
▶ Research progress can also be impeded
▶ Seek explanations which provide insight into the neural network decisions
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Saliency maps

[Samek et al. 2021]

▶ Highlight areas in the input which were relevant for the classification
▶ Various different techniques exist
▶ Often, some form of gradient of output w.r.t. input is used
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Clever Hans Effect [Lapuschkin et al. 2019]

▶ Model uses spurious correlations in dataset (watermark) to make decision

▶ Term borrowed from psychology: Humans or animals react to cues given
unconsciously by experiment leaders
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Clever Hans
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Counterfactuals and adversarial examples



Counterfactual explanations

▶ Counterfactual of a sample: Data point close to original but with different
classification

▶ Difference between original and counterfactual reveals features which led to
classification

▶ Example from CelebA dataset, classified as not-blonde:

original 𝑥 counterfactual 𝑥′ |𝑥 − 𝑥′ |
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Counterfactuals vs. Adversarial Examples

▶ To change classification, naively optimize target class 𝑘 of classifier:

For a classifier 𝑓 : 𝑋 → [0, 1]𝐶 , compute

argmax
𝑥

𝑓𝑘(𝑥)

approximately by gradient ascent

𝑥(𝑡+1) = 𝑥(𝑡) + 𝜂 𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡))

▶ Problem: No semantic changes in the image, have obtained adversarial example

original 𝑥
blonde 𝑝 ≈ 0.01

adversarial example 𝑥′

blonde 𝑝 ≈ 0.99
∝ |𝑥 − 𝑥′ |
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Manifold Hypothesis

▶ Assume that data lies on a low-dimensional submanifold of high-dimensional
input space

▶ E.g. MNIST pictures lie on ∼ 30-dimensional submanifold of 28 × 28 = 784
dimensional input space
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Adversarial Examples
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Normalizing Flows



Recap: Generative models

▶ Task: Given a dataset {𝑥𝑖 |𝑖 = 1, . . . , 𝑁}, generate samples from the underlying
distribution.

▶ One approach: Take samples from a simple latent (e.g. uniform or Gaussian)
distribution and map them to samples of the target distribution

𝑧 ∈ 𝑍 = R𝑛latent ∼ 𝒩(0, 1) ⇒ 𝐺(𝑧) ∈ 𝑋 = R𝑛data ∼ 𝑝data

▶ The latent space is often much lower-dimensional than the data space
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Normalizing flows

▶ Generative model 𝑔 which maps base space 𝑍 to data space 𝑋 bĳectively,
i.e. it is a diffeomorphism

▶ Probability distribution 𝑞𝑍 in 𝑍 is simple, e.g. uniform or normal
▶ Probability distribution 𝑞𝑋 in 𝑋 is given by change of variables

𝑞𝑋 (𝑥) = 𝑞𝑍(𝑔−1(𝑥))
����det 𝜕𝑧

𝜕𝑥

����
▶ Train via maximum likelihood: ℒ = −E𝑥∼𝑝data [log 𝑞𝑋 ]

data space 𝑋 latent space 𝑍

𝑔
←−−−−−

generation:
𝑧 ∼ 𝑞𝑍
𝑥 = 𝑔(𝑧)

𝑔−1

−−−−−−−→
inference:
𝑥 ∼ 𝑞𝑋
𝑧 = 𝑔−1(𝑥)
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RealNVP [Dinh et al. 2017]

▶ Normalizing flow is a neural network with bĳective building blocks
▶ Network needs to be easily invertible and have a tractable Jacobian determinant
▶ RealNVP uses affine coupling layers

𝑦1:𝑑 = 𝑥1:𝑑
𝑦𝑑+1:𝐷 = 𝑥𝑑+1:𝐷 ⊙ exp(𝑠(𝑥1:𝑑)) + 𝑡(𝑥1:𝑑)

𝑠, 𝑡 : R𝑑 → R𝐷−𝑑 (deep CNNs)
forward backward

▶ The Jacobian is given by

𝜕𝑦

𝜕𝑥𝑇
=

[
1𝑑 0

𝜕𝑦𝑑+1:𝐷
𝜕𝑥𝑇1:𝑑

diag
(
exp(𝑠(𝑥1:𝑑))

) ] ⇒
���� 𝜕𝑦𝜕𝑥𝑇

���� = exp
(∑

𝑗

𝑠(𝑥1:𝑑)𝑗
)

▶ Alternate the parts which are modified from layer to layer

▶ RealNVP uses multi-scale architecture
13



Diffeomorphic Counterfactuals



Recall: Adversarial Examples

14



Diffeomorphic Counterfactuals
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Gradient ascent in base space

▶ Gradient ascent in 𝑍 for class 𝑘 of the classifier 𝑓 with learning rate 𝜆:

𝑧(𝑡+1) = 𝑧(𝑡) + 𝜆
𝜕( 𝑓 ◦ 𝑔)𝑘

𝜕𝑧
(𝑧(𝑡))

▶ Using change-of-variable under the flow:

Theorem
Gradient ascent in the base space 𝑍 is given by

𝑥(𝑡+1) = 𝑥(𝑡)+𝜆 𝜸−1
(𝒙(𝒕))

𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡)) + 𝒪(𝜆2)

where 𝛾−1(𝑥) =
( 𝜕𝑔
𝜕𝑧

𝜕𝑔
𝜕𝑧

𝑇 )
(𝑔−1(𝑥)) is the inverse of the induced metric on 𝑋 from 𝑍

under the flow 𝑔.

latent space 𝑍 data space 𝑋

𝑔
−−−−−→

Euclidean metric 𝛿 induced metric 𝛾 16



Normal coordinates

▶ Normal coordinates are a diffeomorphism-invariant way to construct coordinates
in a neighborhood of a point 𝑥 on a manifold 𝑀

▶ Consider 𝑣 ∈ 𝑇𝑥𝑀 and the affinely parametrized geodesic 𝛾 with
1. 𝛾(0) = 𝑥
2. 𝛾′(0) = 𝑣

▶ The exponential map maps 𝑣 to the point 𝛾(1)

▶ Choose a basis of 𝑇𝑥𝑀
▶ Normal coordinates assign to a point 𝑦 = exp(𝑣) in a neighborhood of 𝑥 the

coordinates of 𝑣 in the chosen basis
17



Data coordinates

𝑆

}

𝑋

𝐷

𝑦∥
𝑦⊥

𝛿
2

𝜎
𝑝

𝑞

▶ Assume that data lies in a region 𝑆 = supp(𝑝) around data manifold 𝐷, in data
coordinates 𝑥𝛼

𝑆𝑥 =

{
𝑥𝐷 + 𝑥𝛿

��� 𝑥𝐷 ∈ 𝐷𝑥 , 𝑥
𝛼
𝛿 ∈

(
− 𝛿

2 ,
𝛿
2

)}
with 𝛿 ≪ 1.

▶ Define normal coordinates 𝑦𝜇 in a neighborhood of 𝐷 by
▶ Choose coordinates 𝑦∥ on 𝐷 and for each 𝑝 ∈ 𝐷 a basis {𝑛𝑖} of 𝑇𝑝𝐷⊥
▶ Construct affinely parametrized geodesic 𝜎 : [0, 1] → 𝑋 with 𝜎(0) = 𝑝, 𝜎(1) = 𝑞 and

𝜎′(0) ∈ 𝑇𝑝𝐷⊥
▶ The coordinates of 𝑞 are given by 𝑦∥ and the components 𝑦 𝑖⊥ of 𝜎′(0) in the basis {𝑛𝑖}
▶ For sufficiently small neighborhoods, this is unique
▶ Rescale {𝑛𝑖} so that 𝑆 in 𝑦 coordinates also has extension 𝛿
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Gradient ascent in 𝑦-coordinates

▶ By choosing {𝑛𝑖} orthogonal wrt 𝛾, the inverse induced metric takes the form

𝛾𝜇𝜈(𝑦) =
©­­­­­«
𝛾−1
𝐷
(𝑦)

𝛾−1
⊥1

. . .

𝛾−1
⊥𝑁𝑋−𝑁𝐷

ª®®®®®¬

𝜇𝜈

.

▶ The gradient ascent update 𝑔𝛼(𝑧(𝑖+1)) = 𝑔𝛼(𝑧(𝑖)) + 𝜆 𝛾𝛼𝛽 𝜕 𝑓𝑡
𝜕𝑥𝛽
+ 𝒪(𝜆2) becomes

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
=

𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥
+ 𝜕𝑥𝛼

𝜕𝑦 𝑖⊥
𝛾−1
⊥𝑖

𝜕 𝑓𝑡

𝜕𝑦 𝑖⊥

▶ For 𝛾−1
⊥𝑖
→ 0 and 𝜕𝑥

𝜕𝑦⊥
bounded we have

𝛾𝛼𝛽 𝜕 𝑓𝑡

𝜕𝑥𝛽
→ 𝜕𝑥𝛼

𝜕𝑦
𝜇
∥
𝛾
𝜇𝜈
𝐷

𝜕 𝑓𝑡
𝜕𝑦𝜈∥

and hence the update step points along the data manifold.

⇒ In this case, obtain counterfactuals, not adversarial examples!
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The induced metric for well-trained generative models

Theorem (Diffeomorphic Counterfactuals)

For 𝜖 ∈ (0, 1) and 𝑔 a normalizing flow with Kullback–Leibler divergence KL(𝑝, 𝑞) < 𝜖,

𝛾−1
⊥𝑖
→ 0 as 𝛿→ 0

for all 𝑖 ∈ {1, . . . , 𝑁𝑋 − 𝑁𝐷}.

Theorem (Approximately Diffeomorphic Counterfactuals)

If 𝑔 : 𝑍→ 𝑋 is a generative model with 𝐷 ⊂ 𝑔(𝑍) and image 𝑔(𝑍)which extends in any
non-singular orthogonal direction 𝑦 𝑖⊥ to regions outside of 𝐷 of low probability
𝑝(𝑥) ≪ 1,

𝛾−1
⊥𝑖
→ 0

for 𝛿→ 0 for all non-singular orthogonal directions 𝑦 𝑖⊥.

⇒ For well-trained generative models, the gradient ascent update in 𝑍 stays on the
data manifold
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Sketch of proof (flow-case)

▶ For flows 𝑔 with KL(𝑝, 𝑞) < 𝜖, almost all probability mass is concentrated in
𝑆 = supp(𝑝)

0 < 1 − 𝜖 <

∫
𝑆𝑥

𝑞𝑋 (𝑥)d𝑥

=

∫
𝑆𝑥

𝑞𝑍(𝑔−1(𝑥))
���� 𝜕𝑧𝑎𝜕𝑥𝛼

����d𝑥
=

∫
𝐷𝑦

√
|𝛾𝐷 |

𝑁𝑋−𝑁𝐷∏
𝑖=1

∫ 𝛿/2

−𝛿/2

√
|𝛾⊥𝑖 | 𝑞𝑍(𝑧(𝑦))d𝑦 𝑖⊥ d𝑦∥

▶ When 𝛿→ 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

▶ Hence, the metric 𝛾⊥𝑖 has to diverge, i.e. 𝛾−1
⊥𝑖
→ 0.
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Toy example

 

grad asc in X
grad asc in Z
x

x ′

g(z ′)
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Diffeomorphic Counterfactuals with MNIST

▶ Classifier: CNN with 10 classes (test accuracy: 99%)
▶ Flow: RealNVP
▶ Task: Change classification of 4 to 9

▶ Top row: Counterfactual computed in base space
▶ Bottom row: Adersarial example computed in data space
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Diffeomorphic Counterfactuals with CelebA

▶ Classifier: Binary CNN trained on blonde/not blonde attribute (test accuracy: 94%)
▶ Flow: Glow [Kingma et al. 2018]

▶ Task: Change classification from not blonde to blonde

▶ Top row: Counterfactual computed in base space
▶ Bottom row: Adersarial example computed in data space
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Approximately Diffeomorphic Counterfactuals with CelebA-HQ

▶ For general generating models, inversion not exact (𝑥̃ = 𝑔(𝑧0) ≠ 𝑥0)
▶ Approximate diffeomorphic counterfactuals can be generated for

high-dimensional datasets (1024 × 1024 pixels for CelebA-HQ)
▶ Use StyleGAN trained on CelebA-HQ [Karras et al. 2019]

▶ Use HyperStyle inversion of StyleGAN to find initial latent [Alaluf et al. 2022]
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Diffeomorphic Counterfactuals for regression

▶ Consider crowd-counting dataset of mall images
▶ Count number of people in the image [Ribera et al. 2019]

▶ Flow: Glow [Kingma et al. 2018]

▶ Optimize for low number of people

▶ Optimize for high number of people
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Quantitative evaluation

▶ Diffeomorphic Counterfactuals generalize to SVMs, adversarials do not

MNIST CelebA CheXpert0
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▶ The ground truth classes for the ten nearest neighbors match the target values of
the counterfactuals more often for Diffeomorphic Counterfactuals than for
adversarials
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Dimension of the data manifold

▶ From induced metric, can infer tangent space of data manifold

▶ Perform singular value decomposition of the Jacobian 𝜕𝑔
𝜕𝑧

= 𝑈 Σ𝑉

▶ Rewrite the inverse induced metric as

𝛾−1 =
𝜕𝑔

𝜕𝑧

𝜕𝑔

𝜕𝑧

𝑇

= 𝑈 Σ2 𝑈𝑇

▶ For 𝑁 dimensional data manifold: 𝑁 large singular values

100 101 102 103 104

Eigenvalue index

10-7

10-4

10-1

λ
/
λ

m
ax

MNIST
CelebA
CheXpert
Mall
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Tagent space of data manifold

▶ The left-singular vectors of the Jacobian corresponding to large eigenvalues span
the tangent space of the data manifold

▶ For toy data:
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Conclusions

Summary
▶ Geometry can be used at many points along the deep learning pipeline
▶ Counterfactuals explain black-box classifiers by providing a realistic sample close

to the original but with a different classification
▶ However, gradient ascent optimization of the target class leads to adversarial

examples which lie off the data manifold
▶ Normalizing flows are bĳective generative models
▶ Gradient ascent optimization in the base space of a normalizing flow stays on the

data manifold and leads to counterfactuals
▶ For non-bĳective generative models, this is still true approximately
▶ The reason is that the induced metric makes the learning rate in orthogonal

directions small

Outlook
▶ Can one learn something about the invertibility of normalizing flows using this

construction?
▶ The construction is very general, can it be applied to other problems where a

neural network output needs to be optimized on a data manifold given by a
generative model?
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Appendix



Training normalizing flows

▶ Train by maximizing log-likelihood E𝑥∼𝑝data [log 𝑞𝑋 ] of the train data

ℒ = − 1
𝑁

𝑁∑
𝑖=1

log 𝑞𝑋 (𝑥𝑖)

▶ Recall that this corresponds to minimizing the forward KL divergence of the data
distribution 𝑝data from 𝑞𝑋 (Lecture 1)

KL(𝑝data | |𝑞𝑋 ) = E𝑥∼𝑝data [log 𝑝data(𝑥) − log 𝑞𝑋 (𝑥)]
▶ If we know 𝑝target up to a constant

𝑝target =
1
𝑍
𝑒−𝐸(𝑥)

can also train using reverse KL divergence

KL(𝑞𝑋 | |𝑝target) = E𝑥∼𝑞𝑋 [log 𝑞𝑋 (𝑥) − log 𝑝data(𝑥)]
= E𝑥∼𝑞𝑋 [log 𝑞𝑋 (𝑥)] + E𝑥∼𝑞𝑋 [𝐸(𝑥)] + log𝑍

So the loss is

ℒ =
1
𝑁

𝑁∑
𝑖=1

log(𝑞𝑋 (𝑥𝑖)) + 𝐸(𝑥𝑖)

where the 𝑥𝑖 are sampled from the flow (self sampling) 32



Gradient ascent in base space

▶ Gradient ascent in 𝑍 for class 𝑘 of the classifier 𝑓 with learning rate 𝜆:

𝑧(𝑡+1) = 𝑧(𝑡) + 𝜆𝜕( 𝑓 ◦ 𝑔)𝑘
𝜕𝑧

(𝑧(𝑡))

▶ Using change-of-variable under the flow:

𝑥(𝑡+1) = 𝑔(𝑧(𝑡+1)) = 𝑔

(
𝑧(𝑡) + 𝜆𝜕( 𝑓 ◦ 𝑔)𝑘

𝜕𝑧

)
= 𝑔(𝑧(𝑡)) + 𝜆

∑
𝑖

𝜕𝑔

𝜕𝑧𝑖

𝜕( 𝑓 ◦ 𝑔)𝑘
𝜕𝑧𝑖

+ 𝒪(𝜆2)

= 𝑔(𝑧(𝑡)) + 𝜆
∑
𝑖 , 𝑗

𝜕𝑔

𝜕𝑧𝑖

𝜕𝑔𝑗

𝜕𝑧𝑖

𝜕 𝑓𝑘
𝜕𝑔𝑗
+ 𝒪(𝜆2)

= 𝑥(𝑡)+𝜆 𝛾−1(𝑥(𝑡)) 𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡)) + 𝒪(𝜆2)

with 𝛾−1(𝑥) =
( 𝜕𝑔
𝜕𝑧

𝜕𝑔
𝜕𝑧

𝑇 )
(𝑔−1(𝑥))

33



Gradient ascent in base space

▶ When performing gradient ascent in 𝑋 we do

𝑥(𝑡+1) = 𝑥(𝑡)+𝜆
𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡))

vs. gradient ascent in 𝑍

𝑥(𝑡+1) = 𝑥(𝑡)+𝜆 𝜸−1
(𝒙(𝒕))

𝜕 𝑓𝑘
𝜕𝑥
(𝑥(𝑡)) + 𝒪(𝜆2)

▶ The additional term 𝛾−1 =
( 𝜕𝑔
𝜕𝑧

𝜕𝑔
𝜕𝑧

𝑇 )
is the inverse of the induced metric on 𝑋

from 𝑍

latent space 𝑍 data space 𝑋

𝑔
−−−−−→

Euclidean metric 𝛿 induced metric 𝛾

▶ Effectively, 𝛾−1 aligns the gradient with the data manifold
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Proof: diffeomorphic counterfactuals

▶ For flows 𝑔 with KL(𝑝data , 𝑞𝑋 ) < 𝜖, almost all probability mass is concentrated in
𝑆 = supp(𝑝)

𝜖 > KL(𝑝data , 𝑞𝑋 ) =
∫
𝑆𝑥

𝑝data(𝑥) ln
(
𝑝data(𝑥)
𝑞𝑋 (𝑥)

)
d𝑥

≥
∫
𝑆𝑥

𝑝data(𝑥)
(
1 − 𝑞𝑋 (𝑥)

𝑝data(𝑥)

)
d𝑥 = 1 −

∫
𝑆𝑥

𝑞𝑋 (𝑥)d𝑥

where we have used the inequality

ln
(

1
𝑎

)
≥ 1 − 𝑎 ⇔ ln(𝑎) ≤ 𝑎 − 1

and therefore

0 < 1 − 𝜖 <

∫
𝑆𝑥

𝑞𝑋 (𝑥)d𝑥 =

∫
𝑆𝑥

𝑞𝑍(𝑔−1(𝑥))
���� 𝜕𝑧𝑎𝜕𝑥𝛼

����d𝑥

35



Proof: diffeomorphic counterfactuals

▶ Evaluate the integral in 𝑦𝛼 coordinates

1 − 𝜖 <

∫
𝑆𝑥

𝑞𝑍(𝑔−1(𝑥))
���� 𝜕𝑧𝑎𝜕𝑥𝛼

����d𝑥 =

∫
𝑆𝑦

𝑞𝑍(𝑔−1(𝑥(𝑦)))
���� 𝜕𝑧𝑎𝜕𝑥𝛼

���� ����𝜕𝑥𝛼𝜕𝑦𝜇

����d𝑦
Since

𝛾𝜇𝜈(𝑦) =

©­­­­­­­­­«

𝛾𝐷 (𝑦)

𝛾⊥1
. . .

𝛾⊥𝑁𝑋−𝑁𝐷

ª®®®®®®®®®¬𝜇𝜈
⇒

���� 𝜕𝑧𝑎𝜕𝑥𝛼

���� ����𝜕𝑥𝛼𝜕𝑦𝜇

���� = √
|𝛾𝜇𝜈 | =

√
|𝛾𝐷 |

𝑁𝑋−𝑁𝐷∏
𝑖=1

√
|𝛾⊥𝑖 |

we get

1 − 𝜖 <

∫
𝐷𝑦

√
|𝛾𝐷 |

𝑁𝑋−𝑁𝐷∏
𝑖=1

∫ 𝛿/2

−𝛿/2

√
|𝛾⊥𝑖 | 𝑞𝑍(𝑧(𝑦))d𝑦 𝑖⊥ d𝑦∥

▶ When 𝛿→ 0, the integration domain shrinks to zero, but the value of the integral
is bounded from below

▶ Hence, the metric 𝛾⊥𝑖 has to diverge, i.e. 𝛾−1
⊥𝑖
→ 0.
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