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Motivation



Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant
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Data augmentation

In data augmentation, we train on an enlarged training dataset:

𝒟 = {(𝑥𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} → 𝒟 =
⋃
𝑔∈𝐺

{(𝜌𝑋 (𝑔)𝑥𝑖 , 𝜌𝑌(𝑔)𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}

For instance for blood cells:
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Data augmentation

Data augmentation is
▶ Straightforward to implement
▶ Works with any model architecture

However, it also
▶ Does not yield an exactly equivariant model
▶ Increases training time to learn equivariance
▶ Particularly long training needed for continuous symmetry groups

⇒ Good if equivariance is not required exactly or group action complicated.
⇒ Not suitable if symmetry needs to be exact, e.g. science application

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of networks trained with augmentation?
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Strategy

Consider infinitely wide neural networks

▶ In this limit, the mean output �𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

�𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )𝑌

▶ The mean prediction corresponds to an ensemble prediction

�𝑡 (𝑥) = E�0∼initializations[ 𝑓�𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
�0=init1

𝑓�𝑡 (𝑥)︸             ︷︷             ︸
mean prediction of deep ensemble
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Background: Neural Tangent Kernels and Wide Neural Networks



Standard parametrization

▶ We usually parametrize MLPs as

𝑧(ℓ ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑓 (ℓ )(𝑥) = 𝜎(𝑧(ℓ−1)(𝑥)) , 𝑊 (ℓ ) ∈ R𝑛ℓ×𝑛ℓ−1 , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)

▶ In this parametrization, the gradients scale as

𝜕 𝑓

𝜕𝑊 (ℓ )
𝑖 𝑗

∼
{
𝒪
(

1√
𝑛

)
if ℓ < 𝐿

𝒪 (1) if ℓ = 𝐿
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NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ )
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk
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Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of a neural network to infinity sequentially, the
preactivations 𝑧ℓ

𝑖
(𝑥) at initialization become a Gaussian process with mean zero.

▶ The covariance function 𝐾(ℓ )(𝑥, 𝑥′)𝛿𝑖 𝑗 is also known as the NNGP kernel

▶ The NNGP can be computed recursively layer-by-layer
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Output distribution at initialization [Neal 1995]

Intuitively,
▶ The mean vanishes since

E𝑊 (ℓ ) ,...,𝑊 (1) [𝑧ℓ (𝑥)] =
1√
𝑛ℓ−1
E𝑊 (ℓ ) ,...,𝑊 (1) [𝑊 (ℓ )𝜎(𝑧(ℓ−1)𝑥)]

=
1√
𝑛ℓ−1

E𝑊 (ℓ ) [𝑊 (ℓ )]︸        ︷︷        ︸
0

E𝑊 (ℓ−1) ,...,𝑊 (1) [𝜎(𝑧(ℓ−1)𝑥)]

▶ The preactivations are Gaussian due to the central limit theorem

𝑧ℓ
𝑖
(𝑥) = √

𝑛ℓ−1
1

𝑛ℓ−1

𝑛ℓ∑
𝑗=1︸    ︷︷    ︸

mean

𝑊
(ℓ )
𝑖 𝑗

𝜎(𝑧(ℓ−1)
𝑗

(𝑥))︸              ︷︷              ︸
i.i.d.

∼ 𝒩(0,Cov(𝑧(ℓ )
𝑖
, 𝑧

(ℓ )
𝑗
)︸           ︷︷           ︸

NNGP

) as 𝑛ℓ → ∞
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Empirical NTK

▶ Consider continuous gradient descent
d��
d𝑡 = −� 𝜕ℒ( 𝑓� ,𝒟)

𝜕��

under the loss

ℒ( 𝑓� ,𝒟) = 1
𝑁

𝑁∑
𝑖=1
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NTK at initialization

Deterministic NTK [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ�
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

▶ The deterministic kernel is again given in terms of a recursion over layers

▶ For most common architectures, this recursion can be performed explicitly,
e.g. using neural-tangents Python package [Novak et al. 2020]
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Frozen NTK [Jacot et al. 2020]

Freezing of NTK

For a nonlinearity which is Lipschitz, twice differentiable and has bounded second
derivative,

Θ
�𝑡
𝑖 𝑗
(𝑥, 𝑥′) → Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

uniformly in 𝑡 as the layer widths go to infinity sequentially.

▶ Intuitively, this happens because the weight updates vanish in the limit 𝑛 → ∞

▶ However, the network still learns because the number of neurons grows, leading to
a non-zero collective effect
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Gradient descent at inifinite width [Jacot et al. 2020]

▶ Consider continuous gradient descent training under the MSE loss

d 𝑓�(𝑥)
d𝑡 = −�

𝑁∑
𝑖=1

Θ�𝑡 (𝑥, 𝑥𝑖)( 𝑓�(𝑥𝑖) − 𝑦𝑖)

▶ At infinite width, the NTK freezes and is independent of �𝑡

d 𝑓�𝑡 (𝑥)
d𝑡 = −�

𝑁∑
𝑖=1

Θ(𝑥, 𝑥𝑖)( 𝑓�(𝑥𝑖) − 𝑦𝑖)

▶ This ODE can be solved analytically, resulting in

𝑓�𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−�Θ(𝑋,𝑋)𝑡 − 1)( 𝑓�0 (𝑋) − 𝑌) + 𝑓�0 (𝑥)
where we have introduced

𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖 , Θ(𝑋, 𝑋)𝑖 𝑗 = Θ(𝑥𝑖 , 𝑥 𝑗)
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Gradient descent at inifinite width [Jacot et al. 2020]

As a linear combination of the GPs 𝑓�0 , the prediction

𝑓�𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−�Θ(𝑋,𝑋)𝑡 − 1)( 𝑓�0 (𝑋) − 𝑌) + 𝑓�0 (𝑥)
is a GP.

▶ The mean function is given by

�𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−�Θ𝑡 )𝐾 (1 − 𝑒−�Θ𝑡 )Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−�Θ𝑡 )𝐾(𝑋, 𝑥′) + h.c.

)
▶ On training samples, at 𝑡 → ∞, we predict the training labels

lim
𝑡→∞

�𝑡 (𝑋) = 𝑌

lim
𝑡→∞

Σ𝑡 (𝑋, 𝑋) = 0
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Emergent Equivariance for Large-Width Deep Ensembles



Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14



Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14



Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14



Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14



Kernel transformation

The transformation of the inputs induces a transformation of the kernels

𝐾(𝑥, 𝑥′) → 𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)
Θ(𝑥, 𝑥′) → Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel 𝐾 transform according to

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)Θ(𝑥, 𝑥′)𝜌⊤
𝐾
(𝑔) ,

𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)𝐾(𝑥, 𝑥′)𝜌⊤𝐾 (𝑔) ,
for all 𝑔 ∈ 𝐺 and 𝑥, 𝑥′ ∈ 𝑋, where 𝜌𝐾 is a transformation acting on the spatial
dimensions of the kernels. If the kernels do not have spatial axes, 𝜌𝐾 = 1.
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Sketch of proof

▶ Prove inductively over layers

▶ For nonlinearities, CNN-, fully-connected- and flattening layers

▶ Example: Induction step for NNGP of CNN layer
Assume

𝐾
𝑎,𝑎′

ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥
′) = 𝐾

𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ−1 (𝑥, 𝑥′) ,

then

𝐾
𝑎,𝑎′

ℓ
(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) =

∑
�̃�

𝐾
𝑎+�̃� ,𝑎′+�̃�
ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

=
∑
�̃�

𝐾
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∑
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ℓ

(𝑥, 𝑥′)

= (𝜌𝐾(𝑔)𝐾ℓ (𝑥, 𝑥′)𝜌⊤𝐾 (𝑔))
𝑎,𝑎′
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Permutation shift

Consider an MLP
▶ Kernel invariance

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = Θ(𝑥, 𝑥′) ⇒ Θ(𝜌𝑋 (𝑔)𝑥, 𝑥′) = Θ(𝑥, 𝜌−1
𝑋
(𝑔)𝑥′)

▶ Therefore, for a permutation of training samples associate to 𝑔

Π(𝑔)Θ(𝑋, 𝑋) = Θ(𝜌𝑋 (𝑔)𝑋, 𝑋)
= Θ(𝑋, 𝜌−1

𝑋
(𝑔)𝑋)

= Θ(𝑋, 𝑋)(Π−1(𝑔))⊤

= Θ(𝑋, 𝑋)Π(𝑔)
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Permutation shift

Permutation shift

Data augmentation implies that the permutation group action Π commutes with any
matrix-valued analytical function 𝐹 involving the Gram matrices of the NNGP and
NTK as well as their inverses:

Π(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)
= 𝜌𝐾(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)Π(𝑔)𝜌⊤

𝐾
(𝑔) .
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Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)
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Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

�𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )𝑌

▶ By kernel transformation in the MLP case

�𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )𝑌

▶ By permutation shift

�𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

�𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−�Θ(𝑋,𝑋)𝑡 )𝑌 = �𝑡 (𝑥)
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Emergent equivariance of deep ensembles

Emergent equivariance of deep ensembles

The distribution of large-width ensemble members 𝑓� : 𝑋 → 𝑌 is equivariant with
respect to the representations 𝜌𝑋 and 𝜌𝑌 of the group 𝐺 if data augmentation is
applied. In particular, the ensemble prediction

𝑓𝑡 (𝑥) = Einitializations[ 𝑓�(𝑥)]
is equivariant,

𝑓𝑡 (𝜌𝑋 (𝑔) 𝑥) = 𝜌𝑌(𝑔) 𝑓𝑡 (𝑥) ,
for all 𝑔 ∈ 𝐺. This result holds

1. at any training time 𝑡,
2. for any element of the input space 𝑥 ∈ 𝑋.

▶ Prove by showing equivariance of �𝑡 and Σ𝑡
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Experiments



Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)
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Ising model: convergence to the NTK

▶ For growing width, the MLP ensemble-predictions converge to the NTK
predictions
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Ising model: emergent invariance

▶ Measure relative orbit standard deviation
std𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

mean𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})
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Ising model: emergent invariance
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FashionMNIST: emergent invariance

▶ Train ensembles of CNNs on FashionMNIST augmented by 𝐶𝑘 (multiples of
360◦/𝑘) with 𝑘 = 4, 8, 16

▶ Measure invariance using orbit same predictions: number of predictions in the
orbit which agree with the prediction on untransformed sample

▶ Throughout training, the ensemble predictions are more invariant than the
predictions of the ensemble members, even out of distribution:
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FashionMNIST: continuous symmetry

▶ For continuous groups, the emergent equivariance is only approximate since we
cannot augment with the entire group orbit

▶ For augmentation with more samples from the orbit, equivariance should increase

▶ We see this explicitly in the fraction of samples yielding the same prediction when
rotations are sampled randomly from SO(2) rotations
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Cross products: emergent equivariance

▶ Train a two-hidden-layer MLP to predict cross-product in R3
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Conclusion



Conclusions

Summary
▶ Under data augmentation, ensemble predictions become exactly equivariant in the

large width limit

▶ This equivariance holds even out of distribution and at any training time

▶ We show this by explicitly computing the transformation properties of the neural
tangent kernel under data augmentation

Application
▶ If you need an ensemble, consider data augmentation instead of manifestly

equivariant models

▶ If you need data augmentation, consider an ensemble to boost equivariance

Outlook
▶ Extend proof to general layers

▶ More detailed investigation of continuous approximation

▶ Consider finite-width corrections
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Paper

Emergent Equivariance in Deep Ensembles
arXiv: 2403.03103

Thank you!
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Appendix



Standard parametrization

▶ We usually parametrize MLPs as

𝑧(ℓ ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑓 (ℓ )(𝑥) = 𝜎(𝑧(ℓ−1)(𝑥)) , 𝑊 (ℓ ) ∈ R𝑛ℓ×𝑛ℓ−1 , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ For a one-hidden-layer network R→ R

𝑓 (𝑥) =𝑊 (2)𝜎(𝑊 (1)𝑥) , 𝑊
(1)
𝑖

∼ 𝒩(0, 1) , 𝑊
(2)
𝑖

∼ 𝒩
(
0, 1
𝑛

)
▶ Under gradient descent, the weight updates scale in 𝑛 as

𝜕 𝑓

𝜕𝑊 (2)
𝑖

= 𝜎(𝑊 (1)
𝑖
𝑥) ∈ 𝒪(1) , 𝜕 𝑓

𝜕𝑊 (1)
𝑖

=𝑊
(2)
𝑖

𝜎′(𝑊 (1)
𝑖
𝑥)𝑥 ∈ 𝒪

(
1√
𝑛

)
▶ Hence, the updates in the last layer do not decay as 𝑛 → ∞
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NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ )
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (2)
𝑖

=
1√
𝑛
𝜎(𝑊 (1)

𝑖
𝑥) ∈ 𝒪

(
1√
𝑛

)
,

𝜕 𝑓

𝜕𝑊 (1)
𝑖

=
1√
𝑛
𝑊

(2)
𝑖

𝜎′(𝑊 (1)
𝑖
𝑥)𝑥 ∈ 𝒪

(
1√
𝑛

)
▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics become tractable in this parametrization

▶ We will assume NTK parametrization in the rest of the talk
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Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of an MLP to infinity sequentially, the preactivations 𝑧ℓ
𝑖
(𝑥)

at initialization become a Gaussian process with mean zero and covariance function
𝐾(ℓ )(𝑥, 𝑥′)𝛿𝑖 𝑗 recursively defined by

𝐾(1)(𝑥, 𝑥′) = 1
𝑛0
𝑥⊤𝑥′

Λ(ℓ )(𝑥, 𝑥′) =
(
𝐾(ℓ )(𝑥, 𝑥) 𝐾(ℓ )(𝑥, 𝑥′)
𝐾(ℓ )(𝑥′, 𝑥) 𝐾(ℓ )(𝑥′, 𝑥′)

)
𝐾(ℓ )(𝑥, 𝑥′) = E(𝑢,𝑣)∼𝒩(0,Λ(ℓ−1)(𝑥,𝑥′))[𝜎(𝑢)𝜎(𝑣)]

𝐾(ℓ )(𝑥, 𝑥′) is also known as the NNGP kernel
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NTK at initialization

NTK recursion [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ�
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗 recursively
defined by

Θ(1)(𝑥, 𝑥′) = 𝐾(1)(𝑥, 𝑥′)
Θ(ℓ+1)(𝑥, 𝑥′) = Θ(ℓ )(𝑥, 𝑥′) ¤𝐾(ℓ+1)(𝑥, 𝑥′) + 𝐾(ℓ+1)(𝑥, 𝑥′)

Θ(𝑥, 𝑥′) = Θ(𝐿)(𝑥, 𝑥′)
where

¤𝐾(ℓ )(𝑥, 𝑥′) = E(𝑢,𝑣)∼𝒩(0,Λ(ℓ−1)(𝑥,𝑥′))[𝜎′(𝑢)𝜎′(𝑣)]

▶ For most common architectures, this recursion can be computed explicitly,
e.g. using neural tangents Python package [Novak et al. 2020]
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FashionMNIST: ensemble sizes
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FashionMNIST: OSP on CIFAR10
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FashionMNIST: continuous symmetry OOD

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Or
bi

t M
ea

n 
Sa

m
e 

Pr
ed

ict
io

n

fmnist
mnist
cifar10

37



FashionMNIST: OOD equivariance comparison

DeepEns E2CNN Canon

𝐶4 3.85 ± 0.12 4 ± 0.0 4 ± 0.0
𝐶8 7.72 ± 0.34 7.71 ± 0.21 7.45 ± 0.14
𝐶16 15.24 ± 0.69 15.08 ± 0.34 12.41 ± 0.85

▶ Comparison to equivariant model [Weiler, Cesa 2019] and canonicalization [Kaba et al. 2022]

▶ Augmented ensembles are competitive with manifestly equivariant methods
▶ For symmetries larger than 𝐶4, manifestly equivariant models suffer from

interpolation effects
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