
Emergent Equivariance in Deep Ensembles

Jan E. Gerken

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Talk at the
One World Seminar Series on the Mathematics of Machine Learning

Based on joint work with
Pan Kessel

Motivation

Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant

rotate−−−−−−−−−→

1

Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant

rotate−−−−−−−−−→

1

Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant

rotate−−−−−−−−−→

1

Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant

rotate−−−−−−−−−→

1

Data augmentation

In data augmentation, we train on an enlarged training dataset:

𝒟 = {(𝑥𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} → 𝒟 =
⋃
𝑔∈𝐺

{(𝜌𝑋 (𝑔)𝑥𝑖 , 𝜌𝑌(𝑔)𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}

For instance for blood cells:

2

Data augmentation

In data augmentation, we train on an enlarged training dataset:

𝒟 = {(𝑥𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} → 𝒟 =
⋃
𝑔∈𝐺

{(𝜌𝑋 (𝑔)𝑥𝑖 , 𝜌𝑌(𝑔)𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}

For instance for blood cells:

2

Data augmentation

Data augmentation is
▶ Straightforward to implement
▶ Works with any model architecture

However, it also
▶ Does not yield an exactly equivariant model
▶ Increases training time to learn equivariance
▶ Particularly long training needed for continuous symmetry groups

⇒ Good if equivariance is not required exactly or group action complicated.
⇒ Not suitable if symmetry needs to be exact, e.g. science application

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of networks trained with augmentation?

3

Data augmentation

Data augmentation is
▶ Straightforward to implement
▶ Works with any model architecture

However, it also
▶ Does not yield an exactly equivariant model
▶ Increases training time to learn equivariance
▶ Particularly long training needed for continuous symmetry groups

⇒ Good if equivariance is not required exactly or group action complicated.
⇒ Not suitable if symmetry needs to be exact, e.g. science application

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of networks trained with augmentation?

3

Data augmentation

Data augmentation is
▶ Straightforward to implement
▶ Works with any model architecture

However, it also
▶ Does not yield an exactly equivariant model
▶ Increases training time to learn equivariance
▶ Particularly long training needed for continuous symmetry groups

⇒ Good if equivariance is not required exactly or group action complicated.
⇒ Not suitable if symmetry needs to be exact, e.g. science application

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of networks trained with augmentation?

3

Data augmentation

Data augmentation is
▶ Straightforward to implement
▶ Works with any model architecture

However, it also
▶ Does not yield an exactly equivariant model
▶ Increases training time to learn equivariance
▶ Particularly long training needed for continuous symmetry groups

⇒ Good if equivariance is not required exactly or group action complicated.
⇒ Not suitable if symmetry needs to be exact, e.g. science application

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of networks trained with augmentation?

3

Strategy

Consider infinitely wide neural networks

▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸ ︷︷ ︸
mean prediction of deep ensemble

4

Strategy

Consider infinitely wide neural networks
▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically

▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

neural tangent kernel

test point
train data

learning rate
train labels

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸ ︷︷ ︸
mean prediction of deep ensemble

4

Strategy

Consider infinitely wide neural networks
▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data

▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

augmented data augmented labels

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸ ︷︷ ︸
mean prediction of deep ensemble

4

Strategy

Consider infinitely wide neural networks
▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝜌(𝑔)𝑥) = Θ(𝜌(𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

augmented data augmented labels

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸ ︷︷ ︸
mean prediction of deep ensemble

4

Strategy

Consider infinitely wide neural networks
▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝜌(𝑔)𝑥) = Θ(𝜌(𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

augmented data augmented labels

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸ ︷︷ ︸
mean prediction of deep ensemble

4

Background: Neural Tangent Kernels and Wide Neural Networks

Standard parametrization

▶ We usually parametrize MLPs as

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑓 (ℓ)(𝑥) = 𝜎(𝑧(ℓ−1)(𝑥)) , 𝑊 (ℓ) ∈ R𝑛ℓ×𝑛ℓ−1 , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)

▶ In this parametrization, the gradients scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼
{
𝒪
(

1√
𝑛

)
if ℓ < 𝐿

𝒪 (1) if ℓ = 𝐿

5

Standard parametrization

▶ We usually parametrize MLPs as

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑓 (ℓ)(𝑥) = 𝜎(𝑧(ℓ−1)(𝑥)) , 𝑊 (ℓ) ∈ R𝑛ℓ×𝑛ℓ−1 , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In this parametrization, the gradients scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼
{
𝒪
(

1√
𝑛

)
if ℓ < 𝐿

𝒪 (1) if ℓ = 𝐿

5

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk

6

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk

6

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk

6

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk

6

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk

6

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (ℓ)
𝑖 𝑗

∼

𝒪
(

1√
𝑛

)
if ℓ = 1 or ℓ = 𝐿

𝒪
(

1
𝑛

)
if 1 < ℓ < 𝐿

▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics becomes tractable

▶ We will assume NTK parametrization in the rest of the talk
6

Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of a neural network to infinity sequentially, the
preactivations 𝑧ℓ

𝑖
(𝑥) at initialization become a Gaussian process with mean zero.

▶ The covariance function 𝐾(ℓ)(𝑥, 𝑥′)𝛿𝑖 𝑗 is also known as the NNGP kernel

▶ The NNGP can be computed recursively layer-by-layer

7

Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of a neural network to infinity sequentially, the
preactivations 𝑧ℓ

𝑖
(𝑥) at initialization become a Gaussian process with mean zero.

▶ The covariance function 𝐾(ℓ)(𝑥, 𝑥′)𝛿𝑖 𝑗 is also known as the NNGP kernel

▶ The NNGP can be computed recursively layer-by-layer

7

Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of a neural network to infinity sequentially, the
preactivations 𝑧ℓ

𝑖
(𝑥) at initialization become a Gaussian process with mean zero.

▶ The covariance function 𝐾(ℓ)(𝑥, 𝑥′)𝛿𝑖 𝑗 is also known as the NNGP kernel

▶ The NNGP can be computed recursively layer-by-layer

7

Output distribution at initialization [Neal 1995]

Intuitively,
▶ The mean vanishes since

E𝑊 (ℓ) ,...,𝑊 (1) [𝑧ℓ (𝑥)] =
1√
𝑛ℓ−1
E𝑊 (ℓ) ,...,𝑊 (1) [𝑊 (ℓ)𝜎(𝑧(ℓ−1)𝑥)]

=
1√
𝑛ℓ−1

E𝑊 (ℓ) [𝑊 (ℓ)]︸ ︷︷ ︸
0

E𝑊 (ℓ−1) ,...,𝑊 (1) [𝜎(𝑧(ℓ−1)𝑥)]

▶ The preactivations are Gaussian due to the central limit theorem

𝑧ℓ
𝑖
(𝑥) = √

𝑛ℓ−1
1

𝑛ℓ−1

𝑛ℓ∑
𝑗=1︸ ︷︷ ︸

mean

𝑊
(ℓ)
𝑖 𝑗

𝜎(𝑧(ℓ−1)
𝑗

(𝑥))︸ ︷︷ ︸
i.i.d.

∼ 𝒩(0,Cov(𝑧(ℓ)
𝑖
, 𝑧

(ℓ)
𝑗
)︸ ︷︷ ︸

NNGP

) as 𝑛ℓ → ∞

8

Output distribution at initialization [Neal 1995]

Intuitively,
▶ The mean vanishes since

E𝑊 (ℓ) ,...,𝑊 (1) [𝑧ℓ (𝑥)] =
1√
𝑛ℓ−1
E𝑊 (ℓ) ,...,𝑊 (1) [𝑊 (ℓ)𝜎(𝑧(ℓ−1)𝑥)]

=
1√
𝑛ℓ−1

E𝑊 (ℓ) [𝑊 (ℓ)]︸ ︷︷ ︸
0

E𝑊 (ℓ−1) ,...,𝑊 (1) [𝜎(𝑧(ℓ−1)𝑥)]

▶ The preactivations are Gaussian due to the central limit theorem

𝑧ℓ
𝑖
(𝑥) = √

𝑛ℓ−1
1

𝑛ℓ−1

𝑛ℓ∑
𝑗=1︸ ︷︷ ︸

mean

𝑊
(ℓ)
𝑖 𝑗

𝜎(𝑧(ℓ−1)
𝑗

(𝑥))︸ ︷︷ ︸
i.i.d.

∼ 𝒩(0,Cov(𝑧(ℓ)
𝑖
, 𝑧

(ℓ)
𝑗
)︸ ︷︷ ︸

NNGP

) as 𝑛ℓ → ∞

8

Empirical NTK

▶ Consider continuous gradient descent
d𝜃𝜇
d𝑡 = −𝜂 𝜕ℒ(𝑓𝜃 ,𝒟)

𝜕𝜃𝜇

under the loss

ℒ(𝑓𝜃 ,𝒟) = 1
𝑁

𝑁∑
𝑖=1

𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)

▶ Then, the network evolves according to

d 𝑓𝜃(𝑥)
d𝑡 = −

𝜂

𝑁

𝑁∑
𝑖=1

∑
𝜇

𝜕 𝑓 (𝑥)
𝜕𝜃𝜇

𝜕 𝑓 (𝑥𝑖)
𝜕𝜃𝜇

𝜕𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝜕 𝑓

▶ Hence, the training is driven by the empirical neural tangent kernel (NTK)

Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) =

∑
𝜇

𝜕 𝑓𝑖(𝑥)
𝜕𝜃𝜇

𝜕 𝑓𝑗(𝑥′)
𝜕𝜃𝜇

9

Empirical NTK

▶ Consider continuous gradient descent
d𝜃𝜇
d𝑡 = −𝜂 𝜕ℒ(𝑓𝜃 ,𝒟)

𝜕𝜃𝜇

under the loss

ℒ(𝑓𝜃 ,𝒟) = 1
𝑁

𝑁∑
𝑖=1

𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)

▶ Then, the network evolves according to

d 𝑓𝜃(𝑥)
d𝑡 = − 𝜂

𝑁

𝑁∑
𝑖=1

∑
𝜇

𝜕 𝑓 (𝑥)
𝜕𝜃𝜇

𝜕 𝑓 (𝑥𝑖)
𝜕𝜃𝜇

𝜕𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝜕 𝑓

▶ Hence, the training is driven by the empirical neural tangent kernel (NTK)

Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) =

∑
𝜇

𝜕 𝑓𝑖(𝑥)
𝜕𝜃𝜇

𝜕 𝑓𝑗(𝑥′)
𝜕𝜃𝜇

9

Empirical NTK

▶ Consider continuous gradient descent
d𝜃𝜇
d𝑡 = −𝜂 𝜕ℒ(𝑓𝜃 ,𝒟)

𝜕𝜃𝜇

under the loss

ℒ(𝑓𝜃 ,𝒟) = 1
𝑁

𝑁∑
𝑖=1

𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)

▶ Then, the network evolves according to

d 𝑓𝜃(𝑥)
d𝑡 = − 𝜂

𝑁

𝑁∑
𝑖=1

∑
𝜇

𝜕 𝑓 (𝑥)
𝜕𝜃𝜇

𝜕 𝑓 (𝑥𝑖)
𝜕𝜃𝜇

𝜕𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝜕 𝑓

▶ Hence, the training is driven by the empirical neural tangent kernel (NTK)

Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) =

∑
𝜇

𝜕 𝑓𝑖(𝑥)
𝜕𝜃𝜇

𝜕 𝑓𝑗(𝑥′)
𝜕𝜃𝜇

9

NTK at initialization

Deterministic NTK [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

▶ The deterministic kernel is again given in terms of a recursion over layers

▶ For most common architectures, this recursion can be performed explicitly,
e.g. using neural-tangents Python package [Novak et al. 2020]

10

NTK at initialization

Deterministic NTK [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

▶ The deterministic kernel is again given in terms of a recursion over layers

▶ For most common architectures, this recursion can be performed explicitly,
e.g. using neural-tangents Python package [Novak et al. 2020]

10

NTK at initialization

Deterministic NTK [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

▶ The deterministic kernel is again given in terms of a recursion over layers

▶ For most common architectures, this recursion can be performed explicitly,
e.g. using neural-tangents Python package [Novak et al. 2020]

10

Frozen NTK [Jacot et al. 2020]

Freezing of NTK

For a nonlinearity which is Lipschitz, twice differentiable and has bounded second
derivative,

Θ
𝜃𝑡
𝑖 𝑗
(𝑥, 𝑥′) → Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

uniformly in 𝑡 as the layer widths go to infinity sequentially.

▶ Intuitively, this happens because the weight updates vanish in the limit 𝑛 → ∞

▶ However, the network still learns because the number of neurons grows, leading to
a non-zero collective effect

11

Frozen NTK [Jacot et al. 2020]

Freezing of NTK

For a nonlinearity which is Lipschitz, twice differentiable and has bounded second
derivative,

Θ
𝜃𝑡
𝑖 𝑗
(𝑥, 𝑥′) → Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

uniformly in 𝑡 as the layer widths go to infinity sequentially.

▶ Intuitively, this happens because the weight updates vanish in the limit 𝑛 → ∞

▶ However, the network still learns because the number of neurons grows, leading to
a non-zero collective effect

11

Frozen NTK [Jacot et al. 2020]

Freezing of NTK

For a nonlinearity which is Lipschitz, twice differentiable and has bounded second
derivative,

Θ
𝜃𝑡
𝑖 𝑗
(𝑥, 𝑥′) → Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

uniformly in 𝑡 as the layer widths go to infinity sequentially.

▶ Intuitively, this happens because the weight updates vanish in the limit 𝑛 → ∞

▶ However, the network still learns because the number of neurons grows, leading to
a non-zero collective effect

11

Gradient descent at inifinite width [Jacot et al. 2020]

▶ Consider continuous gradient descent training under the MSE loss

d 𝑓𝜃(𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ𝜃𝑡 (𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ At infinite width, the NTK freezes and is independent of 𝜃𝑡

d 𝑓𝜃𝑡 (𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ(𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ This ODE can be solved analytically, resulting in

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
where we have introduced

𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖 , Θ(𝑋, 𝑋)𝑖 𝑗 = Θ(𝑥𝑖 , 𝑥 𝑗)

12

Gradient descent at inifinite width [Jacot et al. 2020]

▶ Consider continuous gradient descent training under the MSE loss

d 𝑓𝜃(𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ𝜃𝑡 (𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ At infinite width, the NTK freezes and is independent of 𝜃𝑡

d 𝑓𝜃𝑡 (𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ(𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ This ODE can be solved analytically, resulting in

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
where we have introduced

𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖 , Θ(𝑋, 𝑋)𝑖 𝑗 = Θ(𝑥𝑖 , 𝑥 𝑗)

12

Gradient descent at inifinite width [Jacot et al. 2020]

▶ Consider continuous gradient descent training under the MSE loss

d 𝑓𝜃(𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ𝜃𝑡 (𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ At infinite width, the NTK freezes and is independent of 𝜃𝑡

d 𝑓𝜃𝑡 (𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ(𝑥, 𝑥𝑖)(𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ This ODE can be solved analytically, resulting in

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
where we have introduced

𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖 , Θ(𝑋, 𝑋)𝑖 𝑗 = Θ(𝑥𝑖 , 𝑥 𝑗)

12

Gradient descent at inifinite width [Jacot et al. 2020]

As a linear combination of the GPs 𝑓𝜃0 , the prediction

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
is a GP.

▶ The mean function is given by

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾 (1 − 𝑒−𝜂Θ𝑡)Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾(𝑋, 𝑥′) + h.c.

)
▶ On training samples, at 𝑡 → ∞, we predict the training labels

lim
𝑡→∞

𝜇𝑡 (𝑋) = 𝑌

lim
𝑡→∞

Σ𝑡 (𝑋, 𝑋) = 0

13

Gradient descent at inifinite width [Jacot et al. 2020]

As a linear combination of the GPs 𝑓𝜃0 , the prediction

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
is a GP.

▶ The mean function is given by

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾 (1 − 𝑒−𝜂Θ𝑡)Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾(𝑋, 𝑥′) + h.c.

)
▶ On training samples, at 𝑡 → ∞, we predict the training labels

lim
𝑡→∞

𝜇𝑡 (𝑋) = 𝑌

lim
𝑡→∞

Σ𝑡 (𝑋, 𝑋) = 0

13

Gradient descent at inifinite width [Jacot et al. 2020]

As a linear combination of the GPs 𝑓𝜃0 , the prediction

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
is a GP.

▶ The mean function is given by

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾 (1 − 𝑒−𝜂Θ𝑡)Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾(𝑋, 𝑥′) + h.c.

)

▶ On training samples, at 𝑡 → ∞, we predict the training labels

lim
𝑡→∞

𝜇𝑡 (𝑋) = 𝑌

lim
𝑡→∞

Σ𝑡 (𝑋, 𝑋) = 0

13

Gradient descent at inifinite width [Jacot et al. 2020]

As a linear combination of the GPs 𝑓𝜃0 , the prediction

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)(𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)
is a GP.

▶ The mean function is given by

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾 (1 − 𝑒−𝜂Θ𝑡)Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡)𝐾(𝑋, 𝑥′) + h.c.

)
▶ On training samples, at 𝑡 → ∞, we predict the training labels

lim
𝑡→∞

𝜇𝑡 (𝑋) = 𝑌

lim
𝑡→∞

Σ𝑡 (𝑋, 𝑋) = 0

13

Emergent Equivariance for Large-Width Deep Ensembles

Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14

Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14

Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14

Data augmentation

Consider a learning problem which is symmetric w.r.t. some group 𝐺
▶ Assume that we act with representations 𝜌𝑋 and 𝜌𝑌 of 𝐺 on samples and labels,

𝜌𝑋 (𝑔)𝑥 , 𝜌𝑌(𝑔)𝑦

▶ We augment a training dataset 𝒯 by the group orbits of the training samples,
yielding the augmented dataset

𝒯aug = (𝑋,𝑌) = {(𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) | 𝑔 ∈ 𝐺, (𝑥, 𝑦) ∈ 𝒯 }

▶ For finite groups, this means that transforming the training samples is equivalent
to permuting them

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

▶ On the training set 𝑋, this can be written as a permutation matrix Π(𝑔) and hence

Θ(𝜌𝑋 (𝑔)𝑋, 𝜌𝑋 (𝑔)𝑋) = Π(𝑔)Θ(𝑋, 𝑋)(Π(𝑔))⊤

14

Kernel transformation

The transformation of the inputs induces a transformation of the kernels

𝐾(𝑥, 𝑥′) → 𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)
Θ(𝑥, 𝑥′) → Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel 𝐾 transform according to

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)Θ(𝑥, 𝑥′)𝜌⊤
𝐾
(𝑔) ,

𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)𝐾(𝑥, 𝑥′)𝜌⊤𝐾 (𝑔) ,
for all 𝑔 ∈ 𝐺 and 𝑥, 𝑥′ ∈ 𝑋, where 𝜌𝐾 is a transformation acting on the spatial
dimensions of the kernels. If the kernels do not have spatial axes, 𝜌𝐾 = 1.

15

Kernel transformation

The transformation of the inputs induces a transformation of the kernels

𝐾(𝑥, 𝑥′) → 𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)
Θ(𝑥, 𝑥′) → Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel 𝐾 transform according to

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)Θ(𝑥, 𝑥′)𝜌⊤
𝐾
(𝑔) ,

𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)𝐾(𝑥, 𝑥′)𝜌⊤𝐾 (𝑔) ,
for all 𝑔 ∈ 𝐺 and 𝑥, 𝑥′ ∈ 𝑋, where 𝜌𝐾 is a transformation acting on the spatial
dimensions of the kernels. If the kernels do not have spatial axes, 𝜌𝐾 = 1.

15

Sketch of proof

▶ Prove inductively over layers

▶ For nonlinearities, CNN-, fully-connected- and flattening layers

▶ Example: Induction step for NNGP of CNN layer
Assume

𝐾
𝑎,𝑎′

ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥
′) = 𝐾

𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ−1 (𝑥, 𝑥′) ,

then

𝐾
𝑎,𝑎′

ℓ
(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) =

∑
𝑎̃

𝐾
𝑎+𝑎̃ ,𝑎′+𝑎̃
ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)(𝑎+𝑎̃),𝜌−1(𝑔)(𝑎′+𝑎̃)
ℓ−1 (𝑥, 𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)𝑎+𝑎̃ ,𝜌−1(𝑔)𝑎′+𝑎̃
ℓ−1 (𝑥, 𝑥′)

= 𝐾
𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ

(𝑥, 𝑥′)

= (𝜌𝐾(𝑔)𝐾ℓ (𝑥, 𝑥′)𝜌⊤𝐾 (𝑔))
𝑎,𝑎′

16

Sketch of proof

▶ Prove inductively over layers

▶ For nonlinearities, CNN-, fully-connected- and flattening layers

▶ Example: Induction step for NNGP of CNN layer
Assume

𝐾
𝑎,𝑎′

ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥
′) = 𝐾

𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ−1 (𝑥, 𝑥′) ,

then

𝐾
𝑎,𝑎′

ℓ
(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) =

∑
𝑎̃

𝐾
𝑎+𝑎̃ ,𝑎′+𝑎̃
ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)(𝑎+𝑎̃),𝜌−1(𝑔)(𝑎′+𝑎̃)
ℓ−1 (𝑥, 𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)𝑎+𝑎̃ ,𝜌−1(𝑔)𝑎′+𝑎̃
ℓ−1 (𝑥, 𝑥′)

= 𝐾
𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ

(𝑥, 𝑥′)

= (𝜌𝐾(𝑔)𝐾ℓ (𝑥, 𝑥′)𝜌⊤𝐾 (𝑔))
𝑎,𝑎′

16

Sketch of proof

▶ Prove inductively over layers

▶ For nonlinearities, CNN-, fully-connected- and flattening layers

▶ Example: Induction step for NNGP of CNN layer
Assume

𝐾
𝑎,𝑎′

ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥
′) = 𝐾

𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ−1 (𝑥, 𝑥′) ,

then

𝐾
𝑎,𝑎′

ℓ
(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) =

∑
𝑎̃

𝐾
𝑎+𝑎̃ ,𝑎′+𝑎̃
ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)(𝑎+𝑎̃),𝜌−1(𝑔)(𝑎′+𝑎̃)
ℓ−1 (𝑥, 𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)𝑎+𝑎̃ ,𝜌−1(𝑔)𝑎′+𝑎̃
ℓ−1 (𝑥, 𝑥′)

= 𝐾
𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ

(𝑥, 𝑥′)

= (𝜌𝐾(𝑔)𝐾ℓ (𝑥, 𝑥′)𝜌⊤𝐾 (𝑔))
𝑎,𝑎′

16

Sketch of proof

▶ Prove inductively over layers

▶ For nonlinearities, CNN-, fully-connected- and flattening layers

▶ Example: Induction step for NNGP of CNN layer
Assume

𝐾
𝑎,𝑎′

ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥
′) = 𝐾

𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ−1 (𝑥, 𝑥′) ,

then

𝐾
𝑎,𝑎′

ℓ
(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) =

∑
𝑎̃

𝐾
𝑎+𝑎̃ ,𝑎′+𝑎̃
ℓ−1 (𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)(𝑎+𝑎̃),𝜌−1(𝑔)(𝑎′+𝑎̃)
ℓ−1 (𝑥, 𝑥′)

=
∑
𝑎̃

𝐾
𝜌−1(𝑔)𝑎+𝑎̃ ,𝜌−1(𝑔)𝑎′+𝑎̃
ℓ−1 (𝑥, 𝑥′)

= 𝐾
𝜌−1(𝑔)𝑎,𝜌−1(𝑔)𝑎′
ℓ

(𝑥, 𝑥′)

= (𝜌𝐾(𝑔)𝐾ℓ (𝑥, 𝑥′)𝜌⊤𝐾 (𝑔))
𝑎,𝑎′

16

Permutation shift

Consider an MLP
▶ Kernel invariance

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = Θ(𝑥, 𝑥′) ⇒ Θ(𝜌𝑋 (𝑔)𝑥, 𝑥′) = Θ(𝑥, 𝜌−1
𝑋
(𝑔)𝑥′)

▶ Therefore, for a permutation of training samples associate to 𝑔

Π(𝑔)Θ(𝑋, 𝑋) = Θ(𝜌𝑋 (𝑔)𝑋, 𝑋)
= Θ(𝑋, 𝜌−1

𝑋
(𝑔)𝑋)

= Θ(𝑋, 𝑋)(Π−1(𝑔))⊤

= Θ(𝑋, 𝑋)Π(𝑔)

17

Permutation shift

Consider an MLP
▶ Kernel invariance

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = Θ(𝑥, 𝑥′) ⇒ Θ(𝜌𝑋 (𝑔)𝑥, 𝑥′) = Θ(𝑥, 𝜌−1
𝑋
(𝑔)𝑥′)

▶ Therefore, for a permutation of training samples associate to 𝑔

Π(𝑔)Θ(𝑋, 𝑋) = Θ(𝜌𝑋 (𝑔)𝑋, 𝑋)
= Θ(𝑋, 𝜌−1

𝑋
(𝑔)𝑋)

= Θ(𝑋, 𝑋)(Π−1(𝑔))⊤

= Θ(𝑋, 𝑋)Π(𝑔)

17

Permutation shift

Permutation shift

Data augmentation implies that the permutation group action Π commutes with any
matrix-valued analytical function 𝐹 involving the Gram matrices of the NNGP and
NTK as well as their inverses:

Π(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)
= 𝜌𝐾(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)Π(𝑔)𝜌⊤

𝐾
(𝑔) .

18

Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)

19

Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)

19

Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)

19

Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)

19

Sketch of proof

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these

▶ Consider e.g. permutation shift for Θ−1. Then (summation over 𝑙 implied)

Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖 ,𝜋𝑔 (𝑙) [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗 = 𝛿𝑖 𝑗

Θ(𝑋, 𝑋)𝑖𝑙 [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 = 𝛿𝑖 𝑗

▶ By the uniqueness of the inverse, we have

Θ(𝑋, 𝑋)−1
𝑙 𝑗

= [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝜋−1
𝑔 (𝑙), 𝑗 ⇔ Θ(𝑋, 𝑋)−1

𝜋𝑔 (𝑙), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1
𝑙 𝑗

▶ Similarly, one can show that

Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑙) =
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖𝑙

▶ Therefore

[Θ(𝑋, 𝑋)]−1
𝜋𝑔 (𝑖), 𝑗 = [Θ(𝑋, 𝜌𝑋 (𝑔)𝑋)]−1

𝑖 𝑗 = 𝜌𝐾(𝑔)
[
Θ(𝜌−1

𝑋
(𝑔)𝑋, 𝑋)

]−1

𝑖 𝑗
𝜌⊤
𝐾
(𝑔)

= 𝜌𝐾(𝑔)Θ(𝑋, 𝑋)−1
𝑖 ,𝜋−1

𝑔 (𝑗)𝜌
⊤
𝐾
(𝑔)

19

Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌 = 𝜇𝑡 (𝑥)

20

Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌 = 𝜇𝑡 (𝑥)

20

Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌 = 𝜇𝑡 (𝑥)

20

Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌 = 𝜇𝑡 (𝑥)

20

Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡)𝑌 = 𝜇𝑡 (𝑥)

20

Emergent equivariance of deep ensembles

Emergent equivariance of deep ensembles

The distribution of large-width ensemble members 𝑓𝜃 : 𝑋 → 𝑌 is equivariant with
respect to the representations 𝜌𝑋 and 𝜌𝑌 of the group 𝐺 if data augmentation is
applied. In particular, the ensemble prediction

𝑓𝑡 (𝑥) = Einitializations[𝑓𝜃(𝑥)]
is equivariant,

𝑓𝑡 (𝜌𝑋 (𝑔) 𝑥) = 𝜌𝑌(𝑔) 𝑓𝑡 (𝑥) ,
for all 𝑔 ∈ 𝐺. This result holds

1. at any training time 𝑡,
2. for any element of the input space 𝑥 ∈ 𝑋.

▶ Prove by showing equivariance of 𝜇𝑡 and Σ𝑡

21

Experiments

Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)

22

Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)

22

Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)

22

Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)

22

Ising model

▶ Consider the 2d Ising model:
A lattice 𝐿 with spins 𝑠𝑖 ∈ {+1,−1} at each lattice site and energy

ℰ = − 𝐽

𝑛lattice

∑
𝑖∈𝐿

𝐸(𝑖) 𝐸(𝑖) =
∑
𝑗∈𝒩(𝑖)

𝑠𝑖 𝑠 𝑗

▶ Under 𝐶4 (lattice rotations by 90◦), 𝐸(𝑖) is equivariant and ℰ is invariant

▶ We train a one-hidden-layer MLP on 128 samples, augmented to 512 samples,
under the MSE loss on 𝐸(𝑖) with full-batch gradient descent

▶ For this system, the NTK can be computed exactly (e.g. using the
neural-tangents package) [Novak et al. 2020]

▶ Generate out of distribution data by sampling spins from 𝒩(0, 1)

22

Ising model: convergence to the NTK

▶ For growing width, the MLP ensemble-predictions converge to the NTK
predictions

102 103 104

Ensemble Size

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Re
la

tiv
e

di
ffe

re
nc

e
to

 N
TK

Training Data

102 103 104

Ensemble Size

0.00

0.01

0.02

0.03

0.04

Test Data

102 103 104

Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Out of Distribution Data

width 512 width 1024 width 2048 NTK

23

Ising model: emergent invariance

▶ Measure relative orbit standard deviation
std𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

mean𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

24

Ising model: emergent invariance

▶ Measure relative orbit standard deviation
std𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

mean𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

24

Ising model: emergent invariance

25

FashionMNIST: emergent invariance

▶ Train ensembles of CNNs on FashionMNIST augmented by 𝐶𝑘 (multiples of
360◦/𝑘) with 𝑘 = 4, 8, 16

▶ Measure invariance using orbit same predictions: number of predictions in the
orbit which agree with the prediction on untransformed sample

▶ Throughout training, the ensemble predictions are more invariant than the
predictions of the ensemble members, even out of distribution:

1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

12

14

16

Or
bi

t s
am

e
pr

ed
ict

io
ns

perfect invariance
ensemble
ensemble members

Symmetry group

𝐶16

𝐶8

𝐶4

26

FashionMNIST: emergent invariance

▶ Train ensembles of CNNs on FashionMNIST augmented by 𝐶𝑘 (multiples of
360◦/𝑘) with 𝑘 = 4, 8, 16

▶ Measure invariance using orbit same predictions: number of predictions in the
orbit which agree with the prediction on untransformed sample

▶ Throughout training, the ensemble predictions are more invariant than the
predictions of the ensemble members, even out of distribution:

1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

12

14

16

Or
bi

t s
am

e
pr

ed
ict

io
ns

perfect invariance
ensemble
ensemble members

Symmetry group

𝐶16

𝐶8

𝐶4

26

FashionMNIST: emergent invariance

▶ Train ensembles of CNNs on FashionMNIST augmented by 𝐶𝑘 (multiples of
360◦/𝑘) with 𝑘 = 4, 8, 16

▶ Measure invariance using orbit same predictions: number of predictions in the
orbit which agree with the prediction on untransformed sample

▶ Throughout training, the ensemble predictions are more invariant than the
predictions of the ensemble members, even out of distribution:

1 2 3 4 5 6 7 8 9 10
Epoch

0

2

4

6

8

10

12

14

16

Or
bi

t s
am

e
pr

ed
ict

io
ns

perfect invariance
ensemble
ensemble members

Symmetry group

𝐶16

𝐶8

𝐶4

26

FashionMNIST: continuous symmetry

▶ For continuous groups, the emergent equivariance is only approximate since we
cannot augment with the entire group orbit

▶ For augmentation with more samples from the orbit, equivariance should increase

▶ We see this explicitly in the fraction of samples yielding the same prediction when
rotations are sampled randomly from SO(2) rotations

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Or
bi

t S
am

e
Pr

ed
ict

io
n

Symmetry group

𝐶16

𝐶8

𝐶4

27

FashionMNIST: continuous symmetry

▶ For continuous groups, the emergent equivariance is only approximate since we
cannot augment with the entire group orbit

▶ For augmentation with more samples from the orbit, equivariance should increase

▶ We see this explicitly in the fraction of samples yielding the same prediction when
rotations are sampled randomly from SO(2) rotations

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Or
bi

t S
am

e
Pr

ed
ict

io
n

Symmetry group

𝐶16

𝐶8

𝐶4

27

FashionMNIST: continuous symmetry

▶ For continuous groups, the emergent equivariance is only approximate since we
cannot augment with the entire group orbit

▶ For augmentation with more samples from the orbit, equivariance should increase

▶ We see this explicitly in the fraction of samples yielding the same prediction when
rotations are sampled randomly from SO(2) rotations

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Or
bi

t S
am

e
Pr

ed
ict

io
n

Symmetry group

𝐶16

𝐶8

𝐶4

27

Cross products: emergent equivariance

▶ Train a two-hidden-layer MLP to predict cross-product in R3

2 3 4 5 6 7 8 9 10

0.02

0.03

0.04

0.05

0.06

O
rb

it
 M

S
E

Training Data

2 3 4 5 6 7 8 9 10

0.02

0.03

0.04

0.05

0.06

0.07
Test Data

2 3 4 5 6 7 8 9 10

0.02

0.03

0.04

0.05

0.06
Out of Distribution Data

2 3 4 5 6 7 8 9 10

Ensemble Size

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

O
rb

it
 M

S
E

2 3 4 5 6 7 8 9 10

Ensemble Size

0.020

0.022

0.024

0.026

0.028

0.030

0.032

0.034

2 3 4 5 6 7 8 9 10

Ensemble Size

0.014

0.016

0.018

0.020

0.022

0.024

width 128 width 181 width 256

28

Conclusion

Conclusions

Summary
▶ Under data augmentation, ensemble predictions become exactly equivariant in the

large width limit

▶ This equivariance holds even out of distribution and at any training time

▶ We show this by explicitly computing the transformation properties of the neural
tangent kernel under data augmentation

Application
▶ If you need an ensemble, consider data augmentation instead of manifestly

equivariant models

▶ If you need data augmentation, consider an ensemble to boost equivariance

Outlook
▶ Extend proof to general layers

▶ More detailed investigation of continuous approximation

▶ Consider finite-width corrections

29

Conclusions

Summary
▶ Under data augmentation, ensemble predictions become exactly equivariant in the

large width limit

▶ This equivariance holds even out of distribution and at any training time

▶ We show this by explicitly computing the transformation properties of the neural
tangent kernel under data augmentation

Application
▶ If you need an ensemble, consider data augmentation instead of manifestly

equivariant models

▶ If you need data augmentation, consider an ensemble to boost equivariance

Outlook
▶ Extend proof to general layers

▶ More detailed investigation of continuous approximation

▶ Consider finite-width corrections

29

Conclusions

Summary
▶ Under data augmentation, ensemble predictions become exactly equivariant in the

large width limit

▶ This equivariance holds even out of distribution and at any training time

▶ We show this by explicitly computing the transformation properties of the neural
tangent kernel under data augmentation

Application
▶ If you need an ensemble, consider data augmentation instead of manifestly

equivariant models

▶ If you need data augmentation, consider an ensemble to boost equivariance

Outlook
▶ Extend proof to general layers

▶ More detailed investigation of continuous approximation

▶ Consider finite-width corrections
29

Paper

Emergent Equivariance in Deep Ensembles
arXiv: 2403.03103

Thank you!

30

https://arxiv.org/abs/2403.03103

Appendix

Standard parametrization

▶ We usually parametrize MLPs as

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑓 (ℓ)(𝑥) = 𝜎(𝑧(ℓ−1)(𝑥)) , 𝑊 (ℓ) ∈ R𝑛ℓ×𝑛ℓ−1 , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ For a one-hidden-layer network R→ R

𝑓 (𝑥) =𝑊 (2)𝜎(𝑊 (1)𝑥) , 𝑊
(1)
𝑖

∼ 𝒩(0, 1) , 𝑊
(2)
𝑖

∼ 𝒩
(
0, 1
𝑛

)
▶ Under gradient descent, the weight updates scale in 𝑛 as

𝜕 𝑓

𝜕𝑊 (2)
𝑖

= 𝜎(𝑊 (1)
𝑖
𝑥) ∈ 𝒪(1) , 𝜕 𝑓

𝜕𝑊 (1)
𝑖

=𝑊
(2)
𝑖

𝜎′(𝑊 (1)
𝑖
𝑥)𝑥 ∈ 𝒪

(
1√
𝑛

)
▶ Hence, the updates in the last layer do not decay as 𝑛 → ∞

31

NTK parametrization [Jacot et al. 2020]

Standard parametrization:

𝑧(ℓ) =𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩
(
0, 1
𝑛ℓ−1

)
▶ In NTK parametrization, we instead use

𝑧(ℓ) =
1√
𝑛ℓ−1

𝑊ℓ 𝑓 ℓ (𝑥) , 𝑊
(ℓ)
𝑖 𝑗

∼ 𝒩 (0, 1)

▶ This does not change the output distribution at initialization

▶ However, the gradients now scale as

𝜕 𝑓

𝜕𝑊 (2)
𝑖

=
1√
𝑛
𝜎(𝑊 (1)

𝑖
𝑥) ∈ 𝒪

(
1√
𝑛

)
,

𝜕 𝑓

𝜕𝑊 (1)
𝑖

=
1√
𝑛
𝑊

(2)
𝑖

𝜎′(𝑊 (1)
𝑖
𝑥)𝑥 ∈ 𝒪

(
1√
𝑛

)
▶ In this parametrization, the gradients vanish as 𝑛 → ∞

▶ Hence, the dynamics become tractable in this parametrization

▶ We will assume NTK parametrization in the rest of the talk

32

Output distribution at initialization [Neal 1995]

Neural network Gaussian process

When taking the layer width of an MLP to infinity sequentially, the preactivations 𝑧ℓ
𝑖
(𝑥)

at initialization become a Gaussian process with mean zero and covariance function
𝐾(ℓ)(𝑥, 𝑥′)𝛿𝑖 𝑗 recursively defined by

𝐾(1)(𝑥, 𝑥′) = 1
𝑛0
𝑥⊤𝑥′

Λ(ℓ)(𝑥, 𝑥′) =
(
𝐾(ℓ)(𝑥, 𝑥) 𝐾(ℓ)(𝑥, 𝑥′)
𝐾(ℓ)(𝑥′, 𝑥) 𝐾(ℓ)(𝑥′, 𝑥′)

)
𝐾(ℓ)(𝑥, 𝑥′) = E(𝑢,𝑣)∼𝒩(0,Λ(ℓ−1)(𝑥,𝑥′))[𝜎(𝑢)𝜎(𝑣)]

𝐾(ℓ)(𝑥, 𝑥′) is also known as the NNGP kernel

33

NTK at initialization

NTK recursion [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗 recursively
defined by

Θ(1)(𝑥, 𝑥′) = 𝐾(1)(𝑥, 𝑥′)
Θ(ℓ+1)(𝑥, 𝑥′) = Θ(ℓ)(𝑥, 𝑥′) ¤𝐾(ℓ+1)(𝑥, 𝑥′) + 𝐾(ℓ+1)(𝑥, 𝑥′)

Θ(𝑥, 𝑥′) = Θ(𝐿)(𝑥, 𝑥′)
where

¤𝐾(ℓ)(𝑥, 𝑥′) = E(𝑢,𝑣)∼𝒩(0,Λ(ℓ−1)(𝑥,𝑥′))[𝜎′(𝑢)𝜎′(𝑣)]

▶ For most common architectures, this recursion can be computed explicitly,
e.g. using neural tangents Python package [Novak et al. 2020]

34

FashionMNIST: ensemble sizes

1 2 3 4 5 6 7 8 9 10
Epoch

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

Or
bi

t s
am

e
pr

ed
ict

io
ns

num models
5
10
100

35

FashionMNIST: OSP on CIFAR10

1 2 3 4 5 6 7 8 9 10
Epoch

2

4

6

8

10

12

14

16

Or
bi

t s
am

e
pr

ed
ict

io
ns

36

FashionMNIST: continuous symmetry OOD

1 2 3 4 5 6 7 8 9
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Or
bi

t M
ea

n
Sa

m
e

Pr
ed

ict
io

n

fmnist
mnist
cifar10

37

FashionMNIST: OOD equivariance comparison

DeepEns E2CNN Canon

𝐶4 3.85 ± 0.12 4 ± 0.0 4 ± 0.0
𝐶8 7.72 ± 0.34 7.71 ± 0.21 7.45 ± 0.14
𝐶16 15.24 ± 0.69 15.08 ± 0.34 12.41 ± 0.85

▶ Comparison to equivariant model [Weiler, Cesa 2019] and canonicalization [Kaba et al. 2022]

▶ Augmented ensembles are competitive with manifestly equivariant methods
▶ For symmetries larger than 𝐶4, manifestly equivariant models suffer from

interpolation effects

38

	Motivation
	Background: Neural Tangent Kernels and Wide Neural Networks
	Emergent Equivariance for Large-Width Deep Ensembles
	Experiments
	Conclusion
	Appendix
	Appendix

