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Motivation



Symmetries in ML

Many learning problems are symmetric w.r.t. transformations by a symmetry group 𝐺
▶ 𝐺 acts with some representation 𝜌𝑋 : 𝐺 → GL(𝑋) on the inputs 𝑥𝑖 ∈ 𝑋

▶ 𝐺 acts with some representation 𝜌𝑌 : 𝐺 → GL(𝑌) on the outputs 𝑦𝑖 ∈ 𝑌

▶ In a symmetric learning problem, we have

(𝑥, 𝑦) ∈ 𝒟 ⇒ (𝜌𝑋 (𝑔)𝑥, 𝜌𝑌(𝑔)𝑦) ∈ 𝒟 ∀𝑔 ∈ 𝐺

▶ Hence, the map 𝑓 : 𝑥 ↦→ 𝑦 satisfies

𝑓 (𝜌𝑋 (𝑔)𝑥) = 𝜌𝑌(𝑔) 𝑓 (𝑥) ∀𝑔 ∈ 𝐺

▶ If 𝜌𝑌 ≡ 1 then we call 𝑓 invariant, otherwise equivariant
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Data augmentation

In data augmentation, we train on an enlarged training dataset:

𝒯 = {(𝑥𝑖 , 𝑦𝑖) | 𝑖 = 1, . . . , 𝑁} → 𝒯 =
⋃
𝑔∈𝐺

{(𝜌𝑋 (𝑔)𝑥𝑖 , 𝜌𝑌(𝑔)𝑦𝑖) | 𝑖 = 1, . . . , 𝑁}

For instance for blood cells:

Goal: Investigate data augmentation theoretically.
What are the symmetry properties of neural networks trained with augmentation?
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Strategy

Consider infinitely wide neural networks

▶ In this limit, the mean output 𝜇𝑡 after training time 𝑡 can be computed analytically
▶ Training data explicit ⇒ can argue about training with augmented data
▶ Compute the mean output on a transformed sample

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )𝑌

▶ The mean prediction corresponds to an ensemble prediction

𝜇𝑡 (𝑥) = E𝜃0∼initializations[ 𝑓𝜃𝑡 (𝑥)] = lim
𝑛→∞

1
𝑛

init𝑛∑
𝜃0=init1

𝑓𝜃𝑡 (𝑥)︸             ︷︷             ︸
mean prediction of deep ensemble
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Background: Neural Tangent Kernels and Wide Neural Networks



Empirical NTK

▶ Consider continuous gradient descent
d𝜃𝜇
d𝑡 = −𝜂 𝜕ℒ( 𝑓𝜃 ,𝒟)

𝜕𝜃𝜇

▶ Then, the network evolves according to

d 𝑓𝜃(𝑥)
d𝑡 = − 𝜂

𝑁

𝑁∑
𝑖=1

∑
𝜇

𝜕 𝑓 (𝑥)
𝜕𝜃𝜇

𝜕 𝑓 (𝑥𝑖)
𝜕𝜃𝜇

𝜕𝑙( 𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝜕 𝑓

▶ Hence, the training is driven by the empirical neural tangent kernel (NTK)

Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) =

∑
𝜇

𝜕 𝑓𝑖(𝑥)
𝜕𝜃𝜇

𝜕 𝑓𝑗(𝑥′)
𝜕𝜃𝜇
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NTK at initialization

Deterministic NTK [Jacot et al. 2020]

When taking the layer widths to infinity sequentially, the empirical NTK Θ𝜃
𝑖 𝑗
(𝑥, 𝑥′) at

initialization converges in probability to a deterministic kernel Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

▶ Due to law of large numbers

▶ The deterministic kernel is given in terms of a recursion over layers

▶ For most common architectures, this recursion can be performed explicitly,
e.g. using neural-tangents Python package [Novak et al. 2020]

5
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Frozen NTK

In NTK parametrization:

Freezing of NTK [Jacot et al. 2020]

For a nonlinearity which is Lipschitz, twice differentiable and has bounded second
derivative,

Θ
𝜃𝑡
𝑖 𝑗
(𝑥, 𝑥′) → Θ(𝑥, 𝑥′)𝛿𝑖 𝑗

uniformly in 𝑡 as the layer widths go to infinity sequentially.

▶ Intuitively, this happens because the weight updates vanish in the limit 𝑛 → ∞

▶ However, the network still learns because the number of neurons grows, leading to
a non-zero collective effect
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Gradient descent at inifinite width [Jacot et al. 2020]

▶ At infinite width, continuous gradient descent training under the MSE loss is
given by

d 𝑓𝜃𝑡 (𝑥)
d𝑡 = −𝜂

𝑁∑
𝑖=1

Θ(𝑥, 𝑥𝑖)( 𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

▶ This ODE can be solved analytically, resulting in

𝑓𝜃𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(𝑒−𝜂Θ(𝑋,𝑋)𝑡 − 1)( 𝑓𝜃0 (𝑋) − 𝑌) + 𝑓𝜃0 (𝑥)

▶ At initialization, infinitely wide neural networks 𝑓𝜃0 are [
Neal 1995

Lee et al. 2018
Matthews et al. 2018

]
zero-mean GPs with covariance function 𝐾(𝑥, 𝑥′) (NNGP)

▶ As a linear combination of the GPs 𝑓𝜃0 , the prediction 𝑓𝜃(𝑡)(𝑥) is a GP

▶ The mean function is given by

𝜇𝑡 (𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )𝑌

▶ The covariance function is given by

Σ𝑡 (𝑥, 𝑥′) = 𝐾(𝑥, 𝑥′) + Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡 )𝐾 (1 − 𝑒−𝜂Θ𝑡 )Θ−1 Θ(𝑋, 𝑥′)

−
(
Θ(𝑥, 𝑋)Θ−1 (1 − 𝑒−𝜂Θ𝑡 )𝐾(𝑋, 𝑥′) + h.c.

)
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Emergent Equivariance for Large-Width Deep Ensembles



Kernel transformation

Consider the transformation of the kernels on arbitrary inputs

𝐾(𝑥, 𝑥′) → 𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)
Θ(𝑥, 𝑥′) → Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′)

Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel 𝐾 transform according to

Θ(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)Θ(𝑥, 𝑥′)𝜌⊤
𝐾
(𝑔) ,

𝐾(𝜌𝑋 (𝑔)𝑥, 𝜌𝑋 (𝑔)𝑥′) = 𝜌𝐾(𝑔)𝐾(𝑥, 𝑥′)𝜌⊤𝐾 (𝑔) ,
for all 𝑔 ∈ 𝐺 and 𝑥, 𝑥′ ∈ 𝑋, where 𝜌𝐾 is a transformation acting on the spatial
dimensions of the kernels. If the kernels do not have spatial axes, 𝜌𝐾 = 1.

▶ Prove inductively over layers
▶ For nonlinearities, CNN-, fully-connected- and flattening layers
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Permutation shift

▶ Under data augmentation

𝜌𝑋 (𝑔)𝑥𝑖 = 𝑥𝜋𝑔 (𝑖) , 𝜌𝑌(𝑔)𝑦𝑖 = 𝑦𝜋𝑔 (𝑖) , 𝜋 ∈ 𝑆𝑁

Permutation shift

Data augmentation implies that the permutation group action Π commutes with any
matrix-valued analytical function 𝐹 involving the Gram matrices of the NNGP and
NTK as well as their inverses:

Π(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)
= 𝜌𝐾(𝑔)𝐹(Θ,Θ−1 , 𝐾, 𝐾−1)Π(𝑔)𝜌⊤

𝐾
(𝑔) .

▶ Proof permutation shift separately for Θ, Θ−1, 𝐾, 𝐾−1 and all powers of these
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Invariance of ensemble of MLPs

▶ Consider an ensemble of MLPs trained with data augmentation towards invariance

▶ The mean prediction on a transformed test sample is given by

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝜌𝑋 (𝑔)𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )𝑌

▶ By kernel transformation in the MLP case

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Π(𝑔)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )𝑌

▶ By permutation shift

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )Π(𝑔)𝑌

▶ Due to data augmentation, the labels are invariant under group-permutations

𝜇𝑡 (𝜌𝑋 (𝑔)𝑥) = Θ(𝑥, 𝑋)Θ(𝑋, 𝑋)−1(1 − 𝑒−𝜂Θ(𝑋,𝑋)𝑡 )𝑌 = 𝜇𝑡 (𝑥)
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Emergent equivariance of deep ensembles

Emergent equivariance of deep ensembles

The distribution of large-width ensemble members 𝑓𝜃 : 𝑋 → 𝑌 is equivariant with respect
to the representations 𝜌𝑋 and 𝜌𝑌 of the group 𝐺 if data augmentation is applied. In
particular, the ensemble prediction

𝑓𝑡 (𝑥) = Einitializations[ 𝑓𝜃(𝑥)]
is equivariant,

𝑓𝑡 (𝜌𝑋 (𝑔) 𝑥) = 𝜌𝑌(𝑔) 𝑓𝑡 (𝑥) ,
for all 𝑔 ∈ 𝐺. This result holds

1. at any training time 𝑡,
2. for any element of the input space 𝑥 ∈ 𝑋.

▶ Prove by showing equivariance of 𝜇𝑡 and Σ𝑡
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Experiments



Ising model: convergence to the NTK

▶ Consider the 2d Ising model

▶ Symmetry: Energy is invariant under 𝐶4 lattice rotations

▶ Train MLP ensembles with data augmentation and compute NTK exactly

▶ For growing width, the MLP ensemble-predictions converge to the NTK
predictions
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Ising model: emergent invariance

▶ Measure relative orbit standard deviation
std𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})

mean𝑔∈𝐶4ℰ({𝑠𝜌(𝑔)𝑖})
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FashionMNIST: emergent invariance

▶ Train ensembles of CNNs on FashionMNIST augmented by 𝐶𝑘 (multiples of
360◦/𝑘) with 𝑘 = 4, 8, 16

▶ Measure invariance using orbit same predictions: number of predictions in the
orbit which agree with the prediction on untransformed sample

▶ Throughout training, the ensemble predictions are more invariant than the
predictions of the ensemble members, even out of distribution:
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Conclusion



Conclusions

Summary
▶ Under data augmentation, ensemble predictions become exactly equivariant in the

large width limit

▶ This equivariance holds even out of distribution and at any training time

▶ We show this by explicitly computing the transformation properties of the neural
tangent kernel under data augmentation

Application
▶ If you need an ensemble, consider data augmentation instead of manifestly

equivariant models

▶ If you need data augmentation, consider an ensemble to boost equivariance
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Paper

Emergent Equivariance in Deep Ensembles
arXiv: 2403.03103

Thank you!
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