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¢ Infinite width limit — ©¢(x, x;) becomes

— deterministic
— time-independent
e Combine with MSE loss — linear ODE with analytical solution
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What do we gain?

e Analytical study of training independent of particular initialization

— Influence of hyperparameters
— Impact of data augmentation
— Study of spectral bias of specific architectures and data distributions

e New kernel method performant on small datasets

— Let’s extend this to equivariant neural networks!
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Empirical NTK

¢ |n general complicated
¢ Depends on particular initialization 6(0)
¢ time-dependent
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NNs become Gaussian processes

e Att =0, all parameters 6;(0) are iid
e |law of large numbers

1 n
- > X —EX],  Xiid
i=1

Neural Network Gaussian Process

Gaussian process with zero mean and deterministic covariance

K(x,x') = EIN ()N (x')']

... NNGP kernel

(Lee et al. 2018)
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lelt NTK (Jacot, Gabriel, and Hongler 2018)

The empircal NTK converges to a deterministic kernel ©¢(x, x’) Prop O(x,x’)

e Only dependent on distribution of parameters 6
e Can be computed recursively

KD = (k)
e+1) _ 9(9(4)7K(e+1)71'<(£+1))
where .
KD (x, %) = Elo’ (N (x))o’ VO (x)],

o ... non-linearity
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= time-independent

if non-linearity o is Lipschitz, C> and has bounded second derivative

Frozen NTK (Jacot, Gabriel, and Hongler 2018)

Or(x,x') — O(x,%)

uniformly in t when taking the limit layer by layer

e Greatly simplifies ODE!

e MSE loss — linear ODE with analytical solution
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NTK as a kernel method

Kernel ®(x,x') : RY x RY — R similarity measure
Kernel regression:

fx) = a(Y)2(x, X)

with (X, ) ... whole training set, a(X,)) ... coefficients of the regression
Take infinite width infinite time limit and MSE loss — Mean of Gaussian process is
p(x) = O(x, X)0(X, X)~1y

— NTK yields kernel method
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Ingredients for Equivariant Neural Networks

Equivariance under group G

N(preg(9)f) = preg(9IN(f)

— group convolutional neural networks (GCNN)
e Group convolutional layers
e Lifting layer
e elementwise non-linearity o
e group pooling layer (to achieve invariance)

— Need recursive relations for the NTK for all of them

geG
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Group Convolution (GCNN)

Data given in form of feature maps f : X — R"n
For grey-scale images: f : Z2 — R
group convolutional lifting layer

NOG) = =11 = s [ axn(ole™ WS
Kk X — RMnxM1 - filter with support S,.
e consecutive group convolutional layer
NEDNG) = e NODN0) = s [ an (g )N

kG — RM*M+1 | filter
infinite width limit: channelsny,...n;_1 —
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Equivariant NTK

GCNN layers

At each layer /¢

K (1) = B[O @) WOF9)]

Recursion for GCNN layer

+1 l
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Equivariant NTK

GCNN layers

Recursion for GCNN lifting layer

(1+1) 1 : © /
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Equivariant NTK

GCNN layers

Recursion for GCNN lifting layer

(1+1) 1 ' ) y
Koo ) = Sois /S‘dx Kp(g)x.p(g',)x'(f*f )

vol(S

(4+1) N (1) / () /
Opg 1) =Keg (S Vol(S ) / 4% © (g, plgrye )

If first layer —

KOG =), 00 =0
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Non-linearity
Elementwise non-linearity o: Nt (g) = o(N)(g)

Recursion for non-linearity
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Equivariant NTK

Non-linearity
Elementwise non-linearity o: Nt (g) = o(N)(g)

Recursion for non-linearity
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Equivariant NTK

Group pooling layer

Making equivariant network invariant — group pooling

A /d
f)= \/vol(G g
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Group pooling layer

Making equivariant network invariant — group pooling

A /d
f)= \/vol(G g

Recursion for group pooling layer

KD f)
O, f)
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Symmetries of the NTK

Kéfgl(/)reg(h)fnpreg(h/)f) K;(l( iy =il (f f)

643 (preg(I)f preg(Wf") = @,ﬁ”gh,l (F.f)
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C, x R?

Discrete roto-translations in the plane

e g=tr,wheret ¢ R?andr € C,

e Keept as spatial indices, for r extend to nn, channel indices in layer ¢ —

Kg:tr,g’:t’r’(f:f/> = [Krr(faf/)](t,t/) ) @g=tr,g/=t’r’ (fmf/) = [@rr/(faf/)](t?t/)

e For CNN, neural-tangents library provides the following highly optimized operator

[As, (K)](t,t)) = Sl/s dt K(t +t,t' +1t)

K

e Can this be exploited for C, x R? as well?
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Discrete roto-translations in the plane

— Yes!
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C, x R?

Discrete roto-translations in the plane

— Yes!
[ﬂ?lmenw=§;MW&<ﬂﬂvf»M p(rr'1)t')
@%“UJN@ﬂ)[i?lvf rt+2; o5 (O s (FF V(e p(rr e
where

K £))(E ) = KD ) (E o/ )e)

0L .1 = O (. )]t pr'r YY)






Kernel convergence

e Comparing limit kernels with mean of finite-width kernels

e G = C; x R? and random input data

e Relative error averaged over all components of the Gram matrix
¢ Implemented in the JAX-based neural-tangents library’

19



Kernel convergence

e Comparing limit kernels with mean of finite-width kernels
e G = C; x R? and random input data
e Relative error averaged over all components of the Gram matrix
¢ Implemented in the JAX-based neural-tangents library’
Convergence of NTK estimation Convergence of NNGP estimation
~—&— ReLU —&— ReLU
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Histological image classification
The data set

NCT-CRC-HE-100K

e 100000 histological images of human
colorectal cancer (CRC) and normal
tissue

e 9 classes, 2 are cancerous

e 224 x 224 pixels in color
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Histological image classification
The data set

NCT-CRC-HE-100K (kather, Halama, and Marx 2018)

e 100 000 histological images of human
colorectal cancer (CRC) and normal
tissue

e 9 classes, 2 are cancerous
o 224 x 224 pixels in color
Here:
e downsampled to 32 x 32 pixels

e Only up to 1000 training samples used

20



Histological image classification

Performance for small training sets

e NTK kernel method

e Corresponds to training with MSE loss
e Comparison

— CNN
— C4 D(R2
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Histological image classification

Performance for small training sets

e NTK kernel method

e Corresponds to training with MSE loss

e Comparison

— CNN
— C4 D(R2

test accuracy

0.6-

0.4-

0.2-

NTK for image classification

—o— CNN
—o— C4-CNN

0 25 50 75 100 125 150
training set size
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200
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Summary

e Derived all necessary recursive relations for the NTK of GCNNs
e Enabled analytical study of training dynamics for equivariant neural networks in the
infinite width limit
What’s next?
e GCNNs over compact groups utilizing the Fourier domain
e equivariant graph NNs

e Trainability and generalization regimes of equivariant NNs

e Relations to Quantum Field Theory

22



Thanks for your attention!
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