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Symmetries in physics

SU(2) × SU(3) × U(1)

Standard Model of Elementary Particles
three generations of matter

(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≈2.16 MeV/c²

⅔

½

up

d
≈4.70 MeV/c²

−⅓

½

down

c
≈1.2730 GeV/c²

⅔

½

charm

s
≈93.5 MeV/c²

−⅓

½

strange

t
≈172.57 GeV/c²

⅔

½

top

b
≈4.183 GeV/c²

−⅓

½

bottom

L
E
P

T
O

N
S

e
≈0.5110 MeV/c²

−1

½

electron

νe
<0.8 eV/c²

0

½

electron
neutrino

μ
≈105.66 MeV/c²

−1

½

muon

νμ
<0.17 MeV/c²

0

½

muon
neutrino

τ
≈1776.93 MeV/c²

−1

½

tau

ντ
<18.2 MeV/c²

0

½

tau
neutrino G

A
U

G
E
 B

O
S

O
N

S
V

E
C

T
O

R
 B

O
S

O
N

S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≈91.1880 GeV/c²

0

1

Z boson

W
≈80.3692 GeV/c²

±1

1

W boson

S
C

A
L
A

R
 B

O
S

O
N

S

H
≈125.20 GeV/c²

0

0

higgs

2



Symmetries in deep learning

3



Symmetries in deep learning

3



Symmetries in deep learning

rotate

3



Symmetries in deep learning

rotate

network network

3



Symmetries in deep learning

rotate

network network

rotate

3



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

3



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

network

rotation image

3



Equivariance
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Equivariant neural networks
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Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?
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Neural tangent kernel
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Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
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with the empirical neural tangent kernel (NTK)
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∂N(x′)
∂θμ
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Infinite width limit [Jacot et al. 2018]
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Infinite width limit [Jacot et al. 2018]
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NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved
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Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

12



Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

12



Data augmentation at infinite width

μt(ρ(g)x) = Θ(ρ(g)x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

group transformation

12



Data augmentation at infinite width

μt(ρ(g)x) = Θ(ρ(g)x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

group transformation for augmented data

12



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y

= μt(x)

augmented data
augmented labels

group transformation

12



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y

= μt(x)

augmented labels
group transformation

²
=Y

for invariance

12



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y
= μt(x)

group transformation

²
=Y

for invariance

12



Mean prediction

μt(x)

= E
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Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for

● full data augmentation
● infinite ensembles
● at infinite width

Equivariance holds for all training times

Equivariance holds away from the training data
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Key takeaways

Deep ensembles trained with data augmentation are
equivariant

Using physics approaches in deep learning can be very fruitful

Neural tangent kernels provide a powerful theoretical handle
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