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Fisheye images as spherical data
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SWIN transformer [Liu et al. 2021]
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Sampling on the sphere
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HEALPix [Gorski et al. 1998]

HEALPix = Hierarchical Equal Area iso-Latitude Pixelisation
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HEAL-SWIN: Windowing
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HEAL-SWIN: Shifting
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Semantic segmentation
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Depth estimation
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Part II: Neural Tangent Kernels
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Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?
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Neural Tangent Kernel
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Empirical NTK
Training dynamics under continuous gradient descent:

dN
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Infinite width limit [Jacot et al. 2018]
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Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Data augmentation
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Data augmentation at infinite width
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Mean prediction

μt(x)

= E
θ0∼initializations[Nθt(x)] = limn→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

24



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)]

= lim
n→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

24



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)] = limn→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

24



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)] = limn→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

24



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for

● full data augmentation
● infinite ensembles
● at infinite width

Equivariance holds for all training times

Equivariance holds away from the training data
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Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.
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Toy example
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Experiments
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Histological slices [Kather et al. 2018]
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Out of distribution results
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Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)
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Comparison to other methods

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85
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Key takeaways

If you need ensembles
use data augmentation to obtain an equivariant model.

If you need data augmentation
use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical
insights!
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