Geometric Deep Learning and Neural Tangent Kernels

Jan E. Gerken

WASP AI/Math supervisor workshop 2024

Part I: Geometric Deep Learning

Data

Data
$$\bigvee$$
 Data Neural Network \rightarrow Error Function

Geometric deep learning

HEAL-SWIN

in collaboration with

Oscar Carlsson

Hampus Linander

Heiner Spieß

Fredrik Ohlsson Christoffer Petersson

Daniel Persson

Fisheye images as spherical data

project

[Liu et al. 2021]

SWIN = Shifting Windows

SWIN = Shifting Windows

[Liu et al. 2021]

SWIN = Shifting Windows

[Liu et al. 2021]

SWIN = Shifting Windows

Goal: Construct SWIN transformer for spherical data

Sampling on the sphere

Sampling on the sphere

[Gorski et al. 1998]

[Gorski et al. 1998]

[Gorski et al. 1998]

[Gorski et al. 1998]

HEAL-SWIN: Windowing

SWIN

HEAL-SWIN: Windowing

SWIN

HEAL-SWIN: Windowing

SWIN

HEAL-SWIN: Shifting

Semantic segmentation

Semantic segmentation

Depth estimation

Depth estimation error

Part II: Neural Tangent Kernels

Emergent Equivariance in Deep Ensembles

in collaboration with

Pan Kessel

Data augmentation

🖒 Easy to implement

- 🖒 Easy to implement
- 凸 No specialized architecture necessary
- ர No exact equivariance

🖒 Easy to implement

凸 No specialized architecture necessary

ர No exact equivariance

Can we understand data augmentation theoretically?

Neural Tangent Kernel

Empirical NTK

Training dynamics under continuous gradient descent:

Empirical NTK

Training dynamics under continuous gradient descent:

$$\frac{d\mathcal{N}_{\theta}(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^{N} \Theta_{\theta}(x, x_i) \frac{\partial L}{\partial \mathcal{N}(x_i)}$$
training sample

with the empirical neural tangent kernel (NTK)

$$\Theta_{\theta}(x,x') = \sum_{\mu} \frac{\partial \mathcal{N}(x)}{\partial \theta_{\mu}} \frac{\partial \mathcal{N}(x')}{\partial \theta_{\mu}}$$

[Jacot et al. 2018]

[Jacot et al. 2018]

[Jacot et al. 2018]

凸 NTK becomes independent of initialization

[Jacot et al. 2018]

凸 NTK becomes independent of initialization

🖒 NTK becomes constant in training

凸 NTK becomes independent of initialization

凸 NTK becomes constant in training

凸 NTK can be computed for most networks

- 凸 NTK becomes independent of initialization
- 凸 NTK becomes constant in training
- 凸 NTK can be computed for most networks
- ✓ Training dynamics can be solved

[Jacot et al. 2018]

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

[Jacot et al. 2018]

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

[Jacot et al. 2018]

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$
train data

[Jacot et al. 2018]

[Jacot et al. 2018]

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$
for invariance

$$\mu_t(\rho(g)x) = \Theta(x,X)\Theta(X,X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X,X)t})\underbrace{\rho(g)Y}_{=Y}$$

$$= \mu_t(x)$$
for invariance

 $\mu_t(x)$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}}[\mathcal{N}_{\theta_t}(x)]$$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \to \infty} \frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)$$

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \to \infty} \underbrace{\frac{1}{n} \sum_{\theta_0 = \text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)}_{\text{mean prediction of deep ensemble}}$$

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- ✓ Equivariance holds for all training times

- Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
 - at infinite width
- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data
Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

• At infinite width, the mean output at initialization is zero everywhere.

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

- At infinite width, the mean output at initialization is zero everywhere.
- Training with full data augmentation leads to an equivariant function.

Toy example

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

After 1 Training Step

After 2 Training Steps

After 3 Training Steps

After 2000 Training Steps

After 2000 Training Steps

Experiments

Histological slices

[Kather et al. 2018]

Histological slices

[Kather et al. 2018]

Histological slices

Histological slices

Out of distribution results

Ensemble size 5

Out of distribution results

Out of distribution results

Out of distribution results

Out of distribution results

✓ Emergent invariance for rotated FashionMNIST

- ✓ Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries

- ✓ Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries
- ✓ Emergent equivariance (as opposed to invariance)

Comparison to other methods

Comparison to other methods

➡ Models trained on rotated FashionMNIST

Comparison to other methods

➡ Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

	C4	<i>C</i> ₈	C ₁₆
DeepEns+DA	$3.85{\pm}0.12$	7.72±0.34	15.24±0.69
only DA	$3.41{\pm}0.18$	$6.73 {\pm} 0.24$	12.77 ± 0.71
E2CNN ¹	4 ± 0.0	7.71±0.21	$\textbf{15.08}{\pm}\textbf{0.34}$
Canon ²	4 ± 0.0	7.45±0.14	12.41 ± 0.85

¹[Weiler et al. 2019], ²[Kaba et al. 2022]

If you need ensembles

பி use data augmentation to obtain an equivariant model.

If you need ensembles

🖒 use data augmentation to obtain an equivariant model.

If you need data augmentation

d use an ensemble to boost the equivariance.

If you need ensembles

🖒 use data augmentation to obtain an equivariant model.

If you need data augmentation

d use an ensemble to boost the equivariance.

Analysis of neural tangent kernel can lead to powerful practical insights!

Papers

• HEAL-SWIN: A Vision Transformer On The Sphere

Oscar Carlsson^{*}, Jan E. Gerken^{*}, Hampus Linander, Heiner Spieß, Fredrik Ohlsson, Christoffer Petersson, Daniel Persson CVPR 2024

 Emergent Equivariance in Deep Ensembles Jan E. Gerken*, Pan Kessel* ICML 2024 (Oral)

* Equal contribution

Group Website