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We extend this to equivariant NNs

Group Convolution Group Pooling

Elementwise Non-linearity

Explicit expressions for
Provide implementations in the

e roto-translations G = C4; x R? in the plane .
neural-tangents library

e 3d-rotations G = SO(3) on the sphere §2
via spherical convolutions
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» Performance boost due to 3d-rotation invariance extends to the co-width limit
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For some specific GCNN,
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Corresponds to data augmentation

At co-width: mean of an ensemble of data augmented MLPs equals the mean of
# an ensemble of GCNNs at all training times t.

Similar result for data augmented CNN <> C4 x RZ GCNN
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Data Augmentation vs. Group Convolutions at finite width

e Data augmented CNN vs C4 x R?
GCNN on MNIST

e Compare Ly-difference of mean
logits on out-of-distribution data

L*(equiv-logits, non-equiv-logits)

- === Ensemble Size 3 . =

---- Ensemble Size 1 R

——- Ensemble Size8 o AEEES
Ensemble Size 100

PN N = S ,f” T~ \/’,\\ o
/ ) R
2
///"""/\ m———— TS ~o-”
T T
1 23 45 6 7 8 910111213 14 1516 17 18 19 20

Epoch



Summing up




Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks

e Provide explicit expressions for roto-translations and 3d-rotations



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What'’s next?



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What's next?
e equivariant graph NNs



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What's next?
e equivariant graph NNs
e Trainability and generalization regimes of equivariant NNs



Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What's next?
e equivariant graph NNs
e Trainability and generalization regimes of equivariant NNs

e Relations to Quantum Field Theory
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