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What can we say about the dynamics of NNs withoutspecifying their initial parameters?
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(Jacot, Gabriel, and Hongler 2018)
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We extend this to equivariant NNs

Group Convolution Group Pooling

Elementwise Non-linearity
Explicit expressions for
• roto-translations G = C4 ⋉R2 in the plane
• 3d-rotations G = SO(3) on the sphere S2

via spherical convolutions

Provide implementations in the
neural-tangents library (No-

vak et al. 2020)
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∞-width limit in practice: Molecular Energy Prediction on QM9

Atoms’ environments arerepresented as signals onthe sphere (Esteves, Slotine, and

Makadia 2023)
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Data Augmentation↔ Group Convolutional (GC) NNs

For some specific GCNN,
ΘGC(f , f ′) =

1
vol(G)

∫
G

dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸Corresponds to data augmentation

At∞-width: mean of an ensemble of data augmented MLPs equals themean ofan ensemble of GCNNs at all training times t.
Similar result for data augmented CNN↔ C4 ⋉R2 GCNN
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Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 ⋉R2

GCNN onMNIST
• Compare L2-difference of meanlogits on out-of-distribution data
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Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks
• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?
• equivariant graph NNs
• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• Relations to Quantum Field Theory (Banta et al. 2024)
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