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What can we say about the dynamics of NNs withoutspecifying their initial parameters?
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Training dynamics
(Jacot, Gabriel, and Hongler 2018)

Assume Gradient Flow instead of discrete Gradient Descent

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

Neural Network output

(empirical) Neural Tangent Kernel

Learning rate Loss

Training time

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T
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So far, nothing is gained

Θt is dependent on θt, which is stochastic and time-dependent

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt
increasing−−−−−→layer width Θ = E[Θt] Simple ODE

In case of MLE loss, closed-form solution of themean

µ(x) = Θ(x,X )Θ(X ,X )−1Y as t → ∞

Training inputs Training targets

at∞ width.
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What do we gain?

• Useful correspondence

Neural Network Kernel Method

analytically well-understood!

• Non-linear kernel method inspired by empirical insights from NNs (Arora et al. 2020)

• Study trainability vs generalization regimes (Xiao, Pennington, and Schoenholz 2020)

• Spectral bias inside and outside the training set (Bowman and Montufar 2022)

• Tool for dataset distillation (Nguyen, Chen, and Lee 2021)
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How is the NTK computed in practice?

→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]

ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map

6 / 22



How is the NTK computed in practice?
→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]

ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map

6 / 22



How is the NTK computed in practice?
→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]

ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map

6 / 22



How is the NTK computed in practice?
→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map

6 / 22



How is the NTK computed in practice?
→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map

6 / 22



How is the NTK computed in practice?
→ layer by layer! (Jacot, Gabriel, and Hongler 2018)

Convenient: Neural Network Gaussian Process Kernel (NNGP)

K(ℓ)(x, x′) = E
[
N (ℓ)(x)

(
N (ℓ)(x′)

)T]ℓth layer neurons

Each NN layer then corresponds to a particular recursion

K(ℓ+1)(x, x′) = A(ℓ)(K(ℓ)(x, x′)),

Θ(ℓ+1)(x, x′) = B(ℓ)(Θ(ℓ)(x, x′),K(ℓ+1)(x, x′))

layer-specific NNGP map

layer-specific NTK map
6 / 22



NNGP

NTK 

NNGP

NTK 

infinite width

Layer-specific
kernel recursions

NN layer

finite width

→ Implemented in the
neural-tangents library
(Novak et al. 2020)

Convention: We treat nonlin-earities σ as individual layers
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We extend the NTK to equivariant NNs

We cover

Group Convolution Group Pooling

Elementwise Non-linearity
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Recap on equivariant NNs

Want to enforce symmetry w.r.t a group G acting on the input signal f

Orientation
detection

f ρin(g)(f )

N (f ) ρout(g)[N (f )]

ρin(g)

N N

ρout(g)

∀g ∈ G
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Recap on Group Convolutional Neural Networks (GCNNs)

Group convolutional layer

[N (ℓ+1)(f )](g) =
1√

nℓ|Sκ|

∫
G

dhκ
(

g−1h
)
[N (ℓ)(f )](h)

input signal

group element
# channels filter support

group

filter
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Recap on Group Convolutional Neural Networks (GCNNs)

Group pooling
N (ℓ+1)(f ) =

1
vol(G)

∫
G

dg [N (ℓ)(f )](g)

Elementwise non-linearity σ

[N (ℓ+1)(f )](g) = σ
(
[N (ℓ)(f )](g)

)
, σ : R → R elementwise
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The Equivariant NTK

Θ
(ℓ)
g,g′(f , f ′) =

E

[∑
µ

∂[N (ℓ)(f )](g)
∂θµ

(
∂[N (ℓ)(f ′)](g′)

∂θµ

)T]

Evaluation point in group space

∞-width limit: # channels→ ∞
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Recursion of the group convolutional layer

K(ℓ+1)
g,g′ (f , f ′) =

1
vol(Sκ)

∫
Sκ

dh K(ℓ)
gh,g′h(f , f ′)

Θ
(ℓ+1)
g,g′ (f , f ′) = K(ℓ+1)

g,g′ (f , f ′) +
1

vol(Sκ)

∫
Sκ

dh Θ
(ℓ)
gh,g′h(f , f ′)
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Why is that interesting?

• Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

• Can compare data augmentation↔ equivariant architectures

— Ensembles of data-augmented networks are equivariant (Gerken and Kessel 2024; Nordenfors
and Flinth 2024)— → How does this form of equivariance differ?

• Can study biases and the influence of hyperparameters on equivariant NNs throughthe NTK (Xiao, Pennington, and Schoenholz 2020; Bowman and Montufar 2022)

• Obtain equivariant Kernel methods
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On the practical side

Explicit expressions for

• roto-translations G = C4 ⋉R2 in the plane
• 3d-rotations G = SO(3) on the sphere S2

via spherical convolutions

Provide implementations in the
neural-tangents library (No-

vak et al. 2020)
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∞-width limit in practice: Histological image classification

9 classes of microscopicaltissue images (Kather, Halama,

and Marx 2018)
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∞-width limit in practice: Molecular Energy Prediction on QM9

Atoms’ environments arerepresented as signals onthe sphere (Esteves, Slotine, and

Makadia 2023)
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Performance boost due to 3d-rotation invariance extends to the∞-width limit
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Data Augmentation↔ Group Convolutional (GC) NNs

Can construct a GCNN s.t.
ΘGC(f , f ′) =

1
vol(G)

∫
G

dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸
Effective MLP kernel under data augmentation

At∞-width and quadratic L:
mean of an ensemble of data augmented MLPs equals the mean of anensemble of GCNNs at all training times t.

Similar result for data augmented CNN↔ C4 ⋉R2 GCNN
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Architecture correspondence

FC(1) σ FC(3) σ . . . FC(L)

Lifting σ GConv(3) σ . . . GConv(L) GPool

All group convolutions with global filter support Sℓκ = G or S1
κ = X for the lifting layer.
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Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 ⋉R2

GCNN onMNIST
• Compare L2-difference of meanlogits on out-of-distribution data
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Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?
• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?

• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations

• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?

• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?

• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?

• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?
• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?
• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs

22 / 22



Summing up

• Extended the Neural Tangent Kernel theory to equivariant neural networks

• Provide explicit expressions for roto-translations and 3d-rotations
• Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What’s next?
• Relations to Quantum Field Theory (Banta et al. 2024)

• Trainability and generalization regimes of equivariant NNs (Xiao, Pennington, and Schoenholz

2020)

• equivariant graph NNs
22 / 22



Do you want to know more?

arXiv:2406.06504
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