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What can we say about the dynamics of NNs without
specifying their initial parameters?

Let’s learn sin(x)
3-layer MLPs with width 64
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What can we say about the dynamics of NNs without
specifying their initial parameters?

Let’s learn sin(x)

3-layer MLPs with width 256
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What can we say about the dynamics of NNs without
specifying their initial parameters?

Let’s learn sin(x)
3-layer MLPs with width 1024

@ training samples

1
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What can we say about the dynamics of NNs without
specifying their initial parameters?

Let’s learn sin(x)

3-layer MLPs with width 4096

@ training samples
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What can we say about the dynamics of NNs without
specifying their initial parameters?

Let’s learn sin(x)

3-layer MLPs with width 4096

@ training samples
predicted mean

=== predicted std

1

Prediction from
NTK theory!
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Training dynamics

Assume Gradient Flow instead of discrete Gradient Descent

Neural Network output Learning rate
1 \ « Loss

dN Ntrain oL
E(X) = —UZ @r(X,Xi)W

i=1 /
Training time j

(empirical) Neural Tangent Kernel
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O, —"%, 9 —E[©,] mlp  Simple ODE

layer width

In case of MLE loss, closed-form solution of the mean
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So far, nothing is gained

O is dependent on 6;, which is stochastic and time-dependent

Freezing of the NTK

o increasing O = E[@t] » Simple ODE

t
layer width

In case of MLE loss, closed-form solution of the mean
Training inputs l \1'raining targets

px) = 0(x, X)0(Xx,X)" 1y ast — oo

at oo width.
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What do we gain?

e Useful correspondence

analytically well-understood!

|

Neural Network <— Kernel Method

Non-linear kernel method inspired by empirical insights from NNs

Study trainability vs generalization regimes

Spectral bias inside and outside the training set
Tool for dataset distillation
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How is the NTK computed in practice?
— layer by layer!

Convenient: Neural Network Gaussian Process Kernel (NNGP)

" layer neurons
) :
KOx,x)=E [N(E)(x) (J\/'(g)(x’)) ]

Each NN layer then corresponds to a particular recursion

KD (x, %) = AO (KO (x, X)),
9(54_1) (X, X,) — B(é)(@(f) (X, X/),K(£+l) (X, X/))
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How is the NTK computed in practice?
— layer by layer!

Convenient: Neural Network Gaussian Process Kernel (NNGP)

" layer neurons
) :
KOx,x)=E [N(E)(x) (J\/'(g)(x’)) ]

Each NN layer then corresponds to a particular recursion
Ve layer-specific NNGP map
KD (x, %) = AD (KO (x,¥)),
0 (x,x) = BY(O (x,x'), KV (x, X))
~ layer-specific NTK map
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finite width

infinite width

v
!

1
|

v
NNGP K )
NTK )
v

Layer-specific
kernel recursions

v
NNGP K (¢+1)
NTK ©“+)
|

—  Implemented in the
neural-tangents library

Convention: We treat nonlin-
earities o as individual layers
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We extend the NTK to equivariant NNs

We cover

Group Convolution Group Pooling
Elementwise Non-linearity
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Recap on equivariant NNs

Want to enforce symmetry w.r.t a group G acting on the input signal f
* —O> -» Pin(9)
f——— ru(9)f)
Orientation lN N
@l detection l@ N(F) 225 o g) N ()]

S, © Vg € G
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Recap on Group Convolutional Neural Networks (GCNNs)

Group convolutional layer

input signal ﬁ

NED / dh
NED(P)](g) M—s w(g
group element J f "~ group

# channels filter support

filter

VO @)](h)
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Recap on Group Convolutional Neural Networks (GCNNs)

Group pooling
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N ) = o [ Ol
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Recap on Group Convolutional Neural Networks (GCNNs)

Group pooling
1

N ) = o [ Ol

Elementwise non-linearity o

NED()(g) = o (VD (P](9)),  o: R— R elementwise
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The Equivariant NTK

E

Z IN(P)](g) (8[N“)(f’)](g’) ) T]
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0
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The Equivariant NTK

Oy fof) =
/

Evaluation point in group space

Za “)(f ( N (g '))T]

oo-width limit: # channels — o
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Recursion of the group convolutional layer

K—H (ff) Ol:(lS,i) /S dh thg’h(ff)

e+1 (€+1) o o 1 ) '
K — /
(f f) 9,9 (f7f) + VOl(S,Q /Sndh @gh,g h(faf)
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Recursion of the group pooling layer

K(Z—I— 1) (f7f,) _
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Recursion of the group pooling layer

K(Z—I— 1) (f7f,) _

Voll(G) /Gdgdg K (F.f)

1 /
OIS = o 99 O 0.1)

14/22



Why is that interesting?

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

e Can compare data augmentation <> equivariant architectures

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

e Can compare data augmentation <> equivariant architectures
— Ensembles of data-augmented networks are equivariant

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

e Can compare data augmentation <> equivariant architectures
— Ensembles of data-augmented networks are equivariant

— — How does this form of equivariance differ?

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

e Can compare data augmentation <> equivariant architectures
— Ensembles of data-augmented networks are equivariant

— — How does this form of equivariance differ?

e Can study biases and the influence of hyperparameters on equivariant NNs through
the NTK

15/22



Why is that interesting?

e Can compare equivariant architectures with their non-equivariant counterparts in a
parameter-independent setting

e Can compare data augmentation <> equivariant architectures
— Ensembles of data-augmented networks are equivariant

— — How does this form of equivariance differ?

e Can study biases and the influence of hyperparameters on equivariant NNs through
the NTK

e Obtain equivariant Kernel methods
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On the practical side
Explicit expressions for
e roto-translations G = C4; x R? in the plane

e 3d-rotations G = SO(3) on the sphere §2
via spherical convolutions

Provide implementationsin the
neural-tangents library
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oo-width limit in practice: Histological image classification

CNN
Vs.

Cs x R?2 GCNN

9 classes of microscopical
tissue images (kather, Halama,

and Marx 2018)

—o— C4-CNN
0.7- —e— CNN

° °
a 3

Test Accuracy
o
=

0.3-

0 200 400 600 800 1000
Training Set Size
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—e— MLP
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Atoms’ environments are . .
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oo-width limit in practice: Molecular Energy Prediction on QM9

—o— S0(3)
—e— MLP

MAE (meV)

Atoms’ environments are - "
represented as signals on Training Set Size
the sphere

» Performance boost due to 3d-rotation invariance extends to the co-width limit
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TV
Effective MLP kernel under data augmentation

At co-width and quadratic £:

mean of an ensemble of data augmented MLPs equals the mean of an
# ensemble of GCNNs at all training times t.
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Data Augmentation <+ Group Convolutional (GC) NNs

Can construct a GCNN s.t.

@GC(f’f/) _ \VOI% /dg @MLP(f, Preg(9>f/)

G

J/

TV
Effective MLP kernel under data augmentation

At co-width and quadratic £:

mean of an ensemble of data augmented MLPs equals the mean of an
# ensemble of GCNNs at all training times t.

Similar result for data augmented CNN < C4 x R? GCNN
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Architecture correspondence

Fc) ——s o0 —— pc® o Fc@

Llftlng —_— > 0 —> GC0nv(3) — 0 —> " —> GCOHV(L) ——> GPool

All group convolutions with global filter support S,ﬁ =Gor S; = X for the lifting layer.
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Data Augmentation vs. Group Convolutions at finite width

e Data augmented CNN vs C4 x R?
GCNN on MNIST

e Compare Ly-difference of mean
logits on out-of-distribution data

L%(equiv-logits, non-equiv-logits)
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Summing up

e Extended the Neural Tangent Kernel theory to equivariant neural networks
e Provide explicit expressions for roto-translations and 3d-rotations

e Showed how this analytic tool can be used to analyze the connection between data
augmentation and GCNNs

What'’s next?
e Relations to Quantum Field Theory
e Trainability and generalization regimes of equivariant NNs

e equivariant graph NNs
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Do you want to know more?
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