The Neural Tangent Kernel
Equivariance, Data Augmentation and Corrections from
Feynman Diagrams
Philipp Misof

Department of Mathematical Sciences, Division of Algebra and Geometry

August 28, 2025

UNIVERSITY OF

GOTHENBURG NS P s,

CHALMERS

UNIVERSITY OF TECHNOLOGY

mailto:misof@chalmers.se

Feedforward Neural Network (NN)

alias Multi-layer Perceptron (MLP)

Feedforward Neural Network (NN)

alias Multi-layer Perceptron (MLP)

Input
.\.Output
/L@ N\
o0
@< @ o o
[S\ 4 /

N

~

Feedforward Neural Network (NN)

alias Multi-layer Perceptron (MLP)

«Isamap N . RY — R, Input
.\. Output
/L@ N\
o0
@@
| e
[S\ 4 /

N

~

Feedforward Neural Network (NN)

alias Multi-layer Perceptron (MLP)

«Isamap N . RY — R, nput @
- Recursively defined via layers /() / \@ Ouput
/O N\
Activation function 1 \I/nput 9— 0
1 @< @
NOX) =0 WONED (x) + b0) | A
\VAL/AS AN /
weights j /biases \. / o

fort <L, NO®Xx) =WONLCD(x).

~

Feedforward Neural Network (NN)

alias Multi-layer Perceptron (MLP)

«lsamap N : RI — R nput @
\
« Recursively defined via layers A/ (9 / @ Ouput

/L@ N\
Activation function Input o0
N ! (L o N(e—n(\) bw)) Qe e
X)=0|—— X) + ,
Np—1 AN /
weights j /biases \ o ®
fore <L, NOX) =wWONED(x).

NS {W,.E.é),b,-(e) }0,ij are the parameters

~

Initialization

E e
\.kwmfw\ ./N./

—
=}
(=N
f=

Initialization

parameters sampled iid

¢
Wi/(')7bl€ NN(Oal)

~

Initialization

parameters sampled iid

¢
Wi/(')7bl€ NN(Oal)

Training
- training data {(x;, y;)} T

~

Initialization

parameters sampled iid

Wij@’bf ~ N(07 1)
Training
- training data {(x;, y;) } /"
+ loss function L(y, y), empirical loss

L) =

ZL(}'i»NG(Xi))

Nirain

~

Initialization

parameters sampled iid

Wij('g)vblg ~ N(07 1)
Training
- training data {(x;, y;) } /"
+ loss function L(y, y), empirical loss

L) =

ZL(}'i»NG(Xi))

Nirain

+ Training = Minimizing the empirical loss

~

Initialization

parameters sampled iid

WIS'E)?blg ~ N(07 1)
Training
- training data {(x;, y;) } /"
+ loss function L(y, y), empirical loss

L) =

ZL(}'i»NG(Xi))

Nirain

+ Training = Minimizing the empirical loss
+ Almost always Gradient Descent (GD) based.

~

Training Dynamics

Assume Gradient Flow Learning rate

do,(t) “dc

ad ~ do,

Training Dynamics

Assume Gradient Flow Learning rate

do,(t) “dc

ad ~ do,

Chain rule —

dN Nirain oL
W(X) = —77; @t(XaXi)W

Training Dynamics

Assume Gradient Flow Learri
earning rate

o, (t) > dc
d ~ "do,
Chain rule —
dN Nirain oL
a0 = 12 Oex) gz

-/

(empirical) Neural Tangent Kernel

Training Dynamics

Assume Gradient Flow Learri
earning rate

do,(t) “dc

ad ~ do, Or(x,x)
Chain rule —
dN = — %O (X, X;) oL
o W= 2 O x5S

-/

(empirical) Neural Tangent Kernel

Training Dynamics

Assume Gradient Flow Learri
earning rate

do,(t) _ “de N ON) (ON(K)\T
i~ "do, Orlx,x) = 0, (20,)

Chain rule — -
Intuition: Similarity measure of gradients

at different inputs

dN Mtrain oL
o= _”;;t) N

(empirical) Neural Tangent Kernel

Training Dynamics

Assume Gradient Flow Learri
earning rate

do,(t) _ “de N ON) (ON(K)\T
i~ "do, Orlx,x) = 0, (20,)

Chain rule — -
Intuition: Similarity measure of gradients

at different inputs

dN Mtrain oL Lo .
— ©; is time-dependent and stochastic.
at ¢ ”;;f”’ aN) :

(empirical) Neural Tangent Kernel

What happens when we make the hidden layers very wide?

What happens when we make the hidden layers very wide?

What happens when we make the hidden layers very wide?

+ Obtain a centered Gaussian process
« With covariance (NNGP) kernel

E [N(x)N(x’)T} = K(x,x)I,,

What happens when we make the hidden layers very wide?

+ Obtain a centered Gaussian process
« With covariance (NNGP) kernel

E [N(x)N(x’)T} = K(x,x)I,,

What happens when we make the hidden layers very wide?

+ Obtain a centered Gaussian process
« With covariance (NNGP) kernel

E [N(x)N(x’)T} = K(x,x)I,,

Similarly

Freezing of the NTK

O(x,x") — E [6:(x,x)] = O(x, x")I,,

What do we gain?

What do we gain? is now deterministic and time-independent

Ntrain \/

dN oL
W :—n;@xx, N

What do we gain? is now deterministic and time-independent

Ntrain \/

o, oc
o __’7’2;@”’ IN(x;)

* Let's assume square loss

What do we gain? is now deterministic and time-independent

Ntrain \/

o, oc
o __"Iz;@”’ IN(x;)

* Let's assume square loss
* Then we obtain a simple ODE for the NN mean 1:(x) = E [N;(X)]

What do we gain? is now deterministic and time-independent

Ntrain \/

o, oc
o __"Iz;@”’ IN(x;)

* Let's assume square loss
* Then we obtain a simple ODE for the NN mean 1:(x) = E [N;(X)]

What do we gain? is now deterministic and time-independent

Ntrain \/

o, oc
o __”Iz;@”’ IN(x;)

* Let's assume square loss
* Then we obtain a simple ODE for the NN mean 1:(x) = E [N;(X)]

Analytic solution

1 (X) = O(x, X)O (X, X) (T — e 1O*Xtyy

[/

Train inputs Train labels

How is the NTK computed for a given architecture?

How is the NTK computed for a given architecture? — Layer by layer

How is the NTK computed for a given architecture? — Layer by layer

— K® . 06

How is the NTK computed for a given architecture? — Layer by layer

A
/i
1S

N

W 0
\ RN
/A

%l"‘\\

M
\

How is the NTK computed for a given architecture? — Layer by layer

\\\'1,/{ finite width infinite width
‘\\:Z/j‘, i
\‘ b [

O

v)

0) NNGPK)
|
NTK 61

| !
NN layer Layer-specific
kernel recursions

!

i
NNGP K (1)

NTK ¢V

Sl
O

N

AN
W A\

W
\
\

N

il ‘«.‘ W /*,‘/
N

AN
17 17

Ny

Toy example: Learning sin(x)

Toy example: Learning sin(x)

3-layer MLPs with width 8

@ training samples
predicted mean
== predicted std

1

0.5

-1

-3 -2 -1 0 1 2 3

Toy example: Learning sin(x)

3-layer MLPs with width 64

@ training samples
predicted mean
== predicted std

1

0.5

-1

-3 -2 -1 0 1 2 3

Toy example: Learning sin(x)

3-layer MLPs with width 256

@ training samples
predicted mean
== predicted std

1

0.5

-1

-3 -2 -1 0 1 2 3

Toy example: Learning sin(x)

3-layer MLPs with width 1024

@ training samples
predicted mean
== predicted std

1

0.5

-1

-3 -2 -1 0 1 2 3

Toy example: Learning sin(x)

3-layer MLPs with width 4096

1 @ training samples
predicted mean
=== predicted std

-3 -2 -1 0 1 2 3

Equivariant Neural Tangent Kernels

Philipp Misof ! Pan Kessel? Jan E. Gerken'

Abstract
Little is known about the training dynamics of
equivariant neural networks, in particular how
it compares to data augmented training of their
non-equivariant counterparts. Recently, neural
tangent kernels (NTKs) have emerged as a pow-
erful tool to analytically study the training dy-
namics of wide neural networks. In this work,
we take an important step towards a theoretical
understanding of training dynamics of equivari-
ant models by deriving neural tangent kernels for
a broad class of equivariant architectures based
on group convolutions. As a demonstration of
the capabilities of our framework, we show an in-
teresting relationship between data augmentation
and group convolutional networks. Specifically,
we prove that they share the same expected pre-

Schiitt et al., 2021; Unke et al., 2021). Other application

areas include particle physics (Bogatskiy et al., 2020), cos-

2019) and even fairness in large
I

23).

Recently, there has been a number of works which avoid
equivariant architectures but rely on data augmentation
to approximately learn equivariance, most notably Al-
phaFold3 (Abramson et al., 2024). This has the potential ad-
vantage that non-equivariant architectures may offer better
training dynamics, for example favorable scaling capabili-
ties. There en a vigorous debate on this subject with
some empirical works claiming superiority of equivariant ar-
chitectures (Gerken et al rehmer et al., 2024) while
others suggest the opposite (Wang et al., 2024; Abramson
etal., 2024). One challenging aspect to conclusively settle
the matter is that there is no good theoretical understanding
of how the equivariant and the purely augmentation-based

Equivariant Neural Tangent Kernels

Abstract

Little is known about the training dynamics of
equivariant neural networks, in particular how
it compares to data augmented training of their
non-equivariant counterparts. Recently, neural
tangent kernels (NTKs) have emerged as a pow-
erful tool to analytically study the training dy-
namics of wide neural networks. In this work,
we take an important step towards a theoretical
understanding of training dynamics of equivari-
ant models by deriving neural tangent kernels for
a broad class of equivariant architectures based
on group convolutions. As a demonstration of
the capabilities of our framework, we show an in-
teresting relationship between data augmentation
and group convolutional networks. Specifically,
we prove that they share the same expected pre-

p Misof ' Pan Kessel> Jan E. Gerken '

Schiitt et al., 2021; Unke et al., 2021). Other application
areas include particle physics (Bogatskiy et al., 2020), cos-
mology (Perraudin et al., 2019) and even fairness in large
language models (Basu et al., 2023).

Recently, there has been a number of works which avoid
equivariant architectures but rely on data augmentation
to approximately learn equivariance, most notably Al-
phaFold3 (Abramson et al., 2024). This has the potential ad-
vantage that non-equivariant architectures may offer better
training dynamics, for example favorable scaling capabili-
ties. There en a vigorous debate on this subject with
some empirical works claiming superiority of equivariant ar-
chitectures (Gerken et a rehmer et al., 2024) while
others suggest the opposite (Wang et al., 2024; Abramson
etal., 2024). One challenging aspect to conclusively settle
the matter is that there is no good theoretical understanding
of how the equivariant and the purely augmentation-based

Presented at the ICML
2025 in Vancouver

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X — RY

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X — RY
* :
»»
Orientation
@ l detection l @
@
©—©0

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X — RY

O
* > P» 9 (o))
Orientation N lN
@l detection l@ N () 220 (@) IV (F)]

°_O>° Vg € G

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X — RY
O
2-» ,,
@ l Orientation l @ lN lf\/
i out (9)
detection N () 225 pon(@)IN ()

°_O>° Vg € G

This is called equivariance

Convolutional Neural Networks (CNNs)

Single Channel Padded Image

fololojololojolol
ols|o0|8|7 |8 |1]|0 Filter
ol1t9 5|0tz |70 0|1
o|l6i10|2|4,6 |60 * 1|-4
"olelz|e|els|alo 0|1
ols[3|s|5]1|3]0
ol7z]2]7|o|2]o]0
olojfojolololojo
1]
Result
-19 |22 |-20|-12|-17| 11
16 |-30 -1 |23 | -7 |-14
‘4(24|7 |21 |7
-15(-10 | -1 | -1 |-15| 1
-13[13 |-11| -5 |13 | -7
-18| 9 |-18|13 | -3 | 4

10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Neural Networks (CNNs)

Classic convolution layer
ﬂIter

/dx/-ex y)f(x)

"~ domain of input signal

WO)] (y)

|S
filter support —°

Single Channel Padded Image

0

0

0

0

olo

Filter

o

i

0

SR

-4

i

i
0

olololololololo

of~|®w|o o|kr|a

ofv|wiN o|wlo

of~|wlo nv|lale

ofle|uleo slolx

olr|r|lo o|~|w

-19

16 | -

1

-14

15| -

-13

syl

10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Neural Networks (CNNs)

Classic convolution layer

WOE]) / o=) T(0)

"~ domain of input signal

|S
filter support —°

Equivariant w.r.t. translation group G = RY

Single Channel Padded Image

fololojololojolol
ols|o0|8|7 |8 |1]|0 Filter
ol1t9 5|0tz |70 ofl1|o0
o|l6i10|2|4,6 |60 * 1|41
"oletz|e|els|alo ofl1]o0
ols[3|s|5]1|3]0
ol7z]2]7|o|2]o]0
olojfojolololojo
1]
Result
-19 |22 |-20|-12|-17| 11
16 |-30 -1 |23 | -7 |-14
‘4(24|7 |21 |7
-15(-10 | -1 | -1 |-15| 1
-13[13 |-11| -5 |13 | -7
-18| 9 |-18|13 | -3 | 4

10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Group Convolutional Neural Networks (GCNNs)

11

Group Convolutional Neural Networks (GCNNs)

Generalization of a CNN to other groups G acting on a homogeneous space X.

1

V/ ISkl Jre

WA) = dx & (x — y)F(x)

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

IVO()](g) = J% /X dh (g~ h) [(F)](h)

\

group element

Remark: Subtle difference between the first (lifting) layer and subsequent layers

11

Group Convolutional Neural Networks (GCNNs)

Generalization of a CNN to other groups G acting on a homogeneous space X.

IVO()](g) = J% /X dh (g~ h) [(F)](h)

\

group element

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

IVO()](g) = J% /X dh (g~ h) [(F)](h)

group element J

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N((—i—l Z)

11

The Equivariant NTK

12

The Equivariant NTK

Z N (NOE)(G)
a0,

J

12

ouL(f,f) =
!

The Equivariant NTK

B2 e (M

Evaluation point in group space

(g '>>T]

12

The Equivariant NTK

ouL(f,f) =

B2 e (M

!

Evaluation point in group space

oo-width limit:

(g '>>T]

12

The Equivariant NTK

ouL(f,f) =

B2 e (M

!

Evaluation point in group space

oo-width limit: # channels —

(g '>>T]

12

Kernel Recursions of the Group Convolutional Layer

13

Kernel Recursions of the Group Convolutional Layer

(E-H) /
nggl ’

@) f f’

gh, g/h

13

Kernel Recursions of the Group Convolutional Layer

(E-H) /
nggl ’

@) f f’

gh, g/h

OV (F, 7'y = KEHD(F,) + / dh O, (f. 1)

13

How to implement this depends on the group G and the space X.

14

How to implement this depends on the group G and the space X.

We cover

Roto-translations in the plane

G=C*"x27?
X =17

Q

14

How to implement this depends on the group G and the space X.

We cover
Roto-translations in the plane Rotations on SO(3)
G =C*x 72 G = S0(3)
X=12* X =82

Q

14

Z—i—l
R R

SO(3) Implementation

1
J(F,F) = 3.2 /0(dSKRSR’S

(f,f)

15

SO(3) Implementation

Z-H AN 1
G 00 = 5 [05K

How can we compute this integral efficiently?

(f,f)

15

SO(3) Implementation

1
G0 = o [SKuslh 1)

How can we compute this integral efficiently?
— using the Fourier transform on compact groups

— ALl

(k@ F, 7]

mn,m’n’

/ dR / dR' K 3. (F, ') Dy (R) Dy (R')

15

SO(3) Implementation

1
G0 = o [SKuslh 1)

How can we compute this integral efficiently?
— using the Fourier transform on compact groups

— ALl

(k@ F, 7]

mn,m’n’

/ dR / dR' K 3. (F, ') Dy (R) Dy (R')

- Dl are the Wigner D-matrices, irreps of SO(3)

15

SO(3) Implementation

1
G0 = o [SKuslh 1)

How can we compute this integral efficiently?
— using the Fourier transform on compact groups

— ALl

(k@ F, 7]

mn,m’n’

/ dR / dR' K 3. (F, ') Dy (R) Dy (R')

- Dl are the Wigner D-matrices, irreps of SO(3)
* leNg,mne{-l... I

15

SO(3) Implementation

1
G0 = o [SKuslh 1)

How can we compute this integral efficiently?
— using the Fourier transform on compact groups

— ALl

(k@ F, 7]

/ dR / dR' K 3. (F, ') Dy (R) Dy (R')

mn,m’n’

- Dl are the Wigner D-matrices, irreps of SO(3)

* leNg,mne{-l... I

+ for the first layer ¢ = 1, spherical harmonics Y;" are used instead of Wigner D-matrices

15

Fourier Recursion

16

Fourier Recursion

Kernel recursion in Fourier space

[K(6+1)(f f/)]inlnm o = 2/ =

/

0w 5n —n’ Z()n p[Kg(f f/)]

p=—I

1y
mp,m’ (—p)

16

Fourier Recursion

Kernel recursion in Fourier space

[K(6+1)(f f/)]inlnm o = 2/ =

Approximation: truncate for/ > L.

/

0w 5n —n’ Z()n p[Kg(f f/)]

p=—I

11
mp,m’ (—p)

16

Fourier Recursion

Kernel recursion in Fourier space

[K(6+1)(f f/)]inlnm o = 2/ =

Approximation: truncate for/ > L.

Straightforward to implement

/

0w 5n —n’ Z()n p[Kg(f f/)]

p=—I

11
mp,m’ (—p)

16

Fourier Recursion

Kernel recursion in Fourier space

[K(6+1)(f f/)]inlnm o = 2/ =

Approximation: truncate for/ > L.

/

0w 5n —n’ Z()n P[Kf(f f/)]

p=—I

Straightforward to implement ... right?

11
mp,m’ (—p)

16

Goal: Integrate it in the neural-tangents library (written in JAX).

=) () ook / nouraangonts

<> Code () Issues €2 Pullrequests 7) Discussions () Actions [Projects [0 Wiki @ Secury | Insights

This repository was archived by the owner on May 6, 2025. Itis now read-only.

G neural-tangents waon st o For 204 o s 24

P man - | P 5B > £ « [S%ae’ =1 Avout

Fast and Easy Infinite Neural Networks in
@ romanngg ¢ s Sssocomis | pyinon

github/workflows @i
docs
examples
neural_tangents
notebooks
presentation
tests
readthedocs.yml
CITATION
[CONTRIBUTING.md
[LICENSE
LICENSE_SHORT

README.md

Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S? provided by s2fft.

€D s2fft = < @ Fok 13 . | g Samed 201 |

P man - ¥ 8B S) © Addfie - [<>Code ~ | About

@ dependabotfbot] © 1.007 Commits

ithub

Releases o

V130

Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S? provided by s2fft.

Contributors #

Thanks goes to these wonderful people (

Releases o

V130

18

Testing the SO(3) NTK on molecular data (QM9)

19

Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere

fi,z,p ()=

ij 2
T ziz —E<Hr,,||x 1)

=, TP

19

Testing the SO(3) NTK on molecular data (QM9)

—e— S0(3)

Atoms’ environments are

. —e— MLP
represented as signals on
the sphere

=
[}
E
<
S 10°-
fi,z,p(X) =
i 2
Z % T ™ 1)
Ui
— HrI}”p 102 10°
J: 2=z Training Set Size

19

Testing the SO(3) NTK on molecular data (QM9)

—e— S0(3)

Atoms’ environments are

. —e— MLP
represented as signals on
the sphere

MAE (meV)

,_.
2

fi,z,p ()=

>

jizj=2

1 T 1 2

AN

HrI}”p 102
Training Set Size

10

» Performance boost due to 3d-rotation invariance extends to the co-width limit

19

Often, equivariance is not enforced but learned approximately through data
augmentation

20

Often, equivariance is not enforced but learned approximately through data
augmentation

Can we compare the two approaches theoretically?

20

NTK under data augmentation

21

NTK under data augmentation

* Full data augmentation

Mtrain

DM = U U{ Preg fnpreg @y},

i=1 geG

21

NTK under data augmentation

* Full data augmentation

Mtrain

DY — U U{(Preg(g)fhﬁreg(g)}’i)}v

i=1 geG

* Invariance < preg = id

21

NTK under data augmentation

* Full data augmentation

Ntrain

DY — U U{ (preg(9)fi, Preg(9)yi) }

i=1 geG
* Invariance < preg = id

1159 evolves like a non-augmented NN mean 4 with NTK

f f/ |G| z;@ f preg)
ge

21

Data Augmentation < Group Convolutional (GC) NNs

22

Data Augmentation < Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

/ 1 !
O(1.1) = oy .99 0" (F.pes(@)F)

22

Data Augmentation < Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

/ 1 !
O(1.1) = oy .99 0" (F.pes(@)F)

~
same effective kernel
resulting from data augmentation

22

Data Augmentation < Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

/ 1 !
O(1.1) = oy .99 0" (F.pes(@)F)

~
same effective kernel
resulting from data augmentation

At co-width and quadratic £:

» Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22

Architecture correspondence

23

Architecture correspondence

Fc) — 0 —— fc® > O > - > e

23

Architecture correspondence

Fc) — 0 —— fc® > O > - > e

Lifing — o — gconv® — o —— - — gconv) —— GPool

23

Architecture correspondence

Fc(l) — > g —> Fc(3) > O > e > Fc(L)

Lifing — o — gconv® — o —— - — gconv) —— GPool

All group convolutions with global filter support S = G or S. = X for the lifting layer.

23

Data Augmentation vs. Group Convolutions at finite width

24

Data Augmentation vs. Group Convolutions at finite width

+ Data augmented CNN vs C4 x R?
GCNN on MNIST

24

Data Augmentation vs. Group Convolutions at finite width

+ Data augmented CNN vs C4 x R?
GCNN on MNIST

« Compare Lo-difference of
averaged outputs

24

Data Augmentation vs. Group Convolutions at finite width

1.0-
- | | | | | == Ensemble Size 1
ﬂé] ------- S i Ensemble Size 3
Ss- ’ ——- Ensemble Size 8
> Ensemble Size 100
>
(o
- Dataaugmented CNNvs Cy x R? @ N N I
GCNN on MNIST 2 S S
: 8
« Compare Lo-difference of S04 SIS TS S QU - mm———— 1
averaged outputs . =
=}
Jo2
%

1 3 5 7 9 11 13 15 17 19
Epoch

24

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

25

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:

25

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
+ Kernel methods and Gaussian processes in general underperform compared to NNs

25

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
+ Kernel methods and Gaussian processes in general underperform compared to NNs
+ The empirical NTK changes during training

25

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
+ Kernel methods and Gaussian processes in general underperform compared to NNs
+ The empirical NTK changes during training
* No feature learning:

ANO(x) =0 (}7) for¢ <L

25

Taking n — oo allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
+ Kernel methods and Gaussian processes in general underperform compared to NNs
+ The empirical NTK changes during training
* No feature learning:

ANO(x) =0 (}7) for¢ <L

25

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

26

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

0P Pubisting Bach, Learn Set. Technol 2 (2021) 033002 Treps ot orgi 01088 263721531
MACHINE

LEARNING

PAPER

@

OPEN ACCESS

Neural networks and quantum field theory

James Halverson(®, Anindita Maiti’ © and Keegan Stoner
Northesstern Unirersity Baston, MA 02115, United
= Author o whom any cortespondence should be addresed.

Emaik: maitia@rortheastern,edu

Keywords: Wilsonian RG floss, infnie width NNGP, finte widh NN, Gaussian processes, quantum field heary

e Abstract
i We propose a theoretical understanding of neural networks in terms of Wilsonian effective feld
tewrmabewed theory, The correspondence relies on the fact that many asymptotic neural networks are drawn
ST from Gaussian processes (GPs),the analog of non-interacting feld theories. Moving away from the

esbuion 10, g §
e asymptotic limit yields a non-Gaussian process (NGP) and corresponds to turning on particle
of s work st interactions, allowing for the computation of correlation functions of neural network outputs with

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

0P Pubishing

@

Ty 201

iginal Caten o
ik e e
ndr e e of -

A b distbuion
ki work ot

Bach, Learn Set. Technol 2 (2021) 033002 reps ot org/ 0.1 89/2632-2 53 abeca

MACHINE
LEAR[\I\NQ
PAPER

Neural networks and quantum field theory

James Halverson(®, Anindita Maiti’ © and Keegan Stoner
University Boston, MA 02115, Unite
= Author o whom any cortespondence should be addresed.

Emaik: maitia@rortheastern,edu

Keywords: Wilsonian RG floss, infnie width NNGP, finte widh NN, Gaussian processes, quantum field heary

Abstract

We propose a theoretical understanding of neural networks in terms of Wilsonian effective field
theory. The correspondence relies on the fact that many asymptotic neural networks are drawn
from Gaussian processes (GPs), the analog of non-interacting field theories. Moving away from the
asymptotic limit yields a non-Gaussian process (NGP) and corresponds to turning on paricle
interactions, allowing for the computation of correlation functions of neural network outputs with

The Principles of Deep Learning Theory

An Effective Theory Approach
to Understanding Neural Networks

DANIEL A. ROBERTS
MIT

SO YAIDA
Meta AT

based on research in collaboration with

BORIS HANIN
Princeton University

26

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

0P Pubishing

@

OPENACCESS

Ty 201

iginal Caten o
ik e e

e tems ot
ibton 407
A b distbuion

ki work ot

Bach, Learn Set. Technol 2 (2021) 033002 reps ot org/ 0.1 89/2632-2 53 abeca

MACHINE

LEARNING

PAPER

Neural networks and quantum field theory
James Halverson), Anindita Maiti* © and Keegan Stoner

N Universit, Baston, MA 02115, Usited
Author to whors any correspondence should be addresed,

Emaik: maitia@rortheastern,edu

Keywords: Wilsonian RG floss, infnie width NNGP, finte widh NN, Gaussian processes, quantum field heary

Abstract

We propose a theoretical understanding of neural networks in terms of Wilsonian effective field
theory. The correspondence relies on the fact that many asymptotic neural networks are drawn
from Gaussian processes (GPs), the analog of non-interacting field theories. Moving away from the
asymptotic limit yields a non-Gaussian process (NGP) and corresponds to turning on paricle
interactions, allowing for the computation of correlation functions of neural network outputs with

The Principles of Deep Learning Theory

An Effective Theory Approach
to Understanding Neural Networks

DANIEL A. ROBERTS
MIT

SIO YAIDA
Meta Al
based on research in collaboration with

BORIS HANIN
Princeton University

The Setup

We now focus on preactivations

‘ 1 ¢ — ¢
29(x) = = S W o@D (x)) +b
—1 j=1 ————

N (£=1) pefore

27

The Setup

We now focus on preactivations

4 1 Y —
29 (x) = = > W,.E.)a(zj(Yx)) +b
-1 j=1 —_———

N (£=1) pefore

We are now interested in the distribution of the output at initialization

p (z<L> |D>

27

The Setup

We now focus on preactivations

1 _
Z_(Z) (X) _ = Z W_(_E) O'(Zj(z U(X)) +bl_(€)
-1 j=1 S———r

N (=1) before
We are now interested in the distribution of the output at initialization

p(20)

Decompose it layer by layer

p (z(@Jrl)\D) _ /H dZ’) @Jrl))p<z(t)|zD)

Normal dist.

27

¢ 0)
p(20D) = [T pla iz ()
i

28

0+1 _ (6) 0+1) (¢ ¢
p(2evm) = [[Teel a1z)

We know that p(z()| D) becomes a Normal distribution as n — oco.

28

+1 _ (6) 0+1) (¢ ¢
p(2evm) = [[Teel a1z)

We know that p(z()| D) becomes a Normal distribution as n — oco.

Instead of a Normal distribution with probability density function

1 CLlre1) s
p(z)_Zexp(2zK z>_e

28

Z+1 |D /H dZ @Jrl z(f) (Z(é)‘zD)

We know that p(z()| D) becomes a Normal distribution as n — oco.

Instead of a Normal distribution with probability density function

1 RS AR W
p(z)_Zexp(2zK z>_e

make an ansatz for the action

Z gala2 ZZI alzl e}

al,azeD
n

1
- 5 Z V(ala2)(a3a4) Z Zil;alzil;a2zi2;a3ziz;a4

Qi,ye.,aq€D i1,i2=1

28

0+1 _ (6) 0+1) (¢ ¢
p(2evm) = [IT¢e(2 o1z)p(z 1)

We know that p(z()| D) becomes a Normal distribution as n — oco.

Instead of a Normal distribution with probability density function

1 RS AR W
p(z)_Zexp< 2zK z>_e

make an ansatz for the action

Z galaQZZI alzl e}

al,azeD
n

1 o) (e
- 5 Z V(al(m)(asu” Z Zil;alzil;a2zi2;a3ziz;a4

aq,...,a4€D i1,ia=1

28

Characterizing the Distribution Through its Cumulants

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:
a1 1
g 12 _ Ko1e2 | @ (
n

v(a1a2)(a3a4) _ lv(alag)(asrm) +0 (12>
n n

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

1
Q1o __ a1 _
gruIer = K102 4 O (n>

v(alag)(a3a4) _ lv(alag)(asrm) +0 (12>
n n

where V(ca2)(esas) — e[z 7. .z, 7,,]isthe 4th cumulant.

29

Statistics Described by Recursion System

+ Analysis can be extended to joint distribution

p(z, 0 |D)

30

Statistics Described by Recursion System

+ Analysis can be extended to joint distribution
p@z", 09 D)

« Atorder O(}), fully characterized by a closed system of recursions containing K, ©
and V, as well as joint cumulants A, B, D, F of degree 4.

30

Statistics Described by Recursion System

+ Analysis can be extended to joint distribution
pz",09 D)

« Atorder O(}), fully characterized by a closed system of recursions containing K, ©
and V, as well as joint cumulants A, B, D, F of degree 4.

KO Vy),A(e) B8O p® F®

L KD, @O YD A1) glerD) pe+D) FED) | o (le)

30

Recursions

+ have been used to find optimal initialization hyperparameters (Criticality)

31

Recursions

+ have been used to find optimal initialization hyperparameters (Criticality)
+ Explain qualitative differences between activation functions

31

Recursions

+ have been used to find optimal initialization hyperparameters (Criticality)
+ Explain qualitative differences between activation functions
+ Explain Exploding and Vanishing Gradients

31

Empirical V, evolution at criticality
for a ReLU network

10! ¢
y=36.97("1 :
Larn =7

y=14.570'4
Lyan = 10

_ y=17.814"
Lyan = 10

[Vous|

100 =

___ y=3400® =351 H L y=23501%
Lyar = 10 Lo = 10 : Lyar = 10
) — 100 ="y — I e R
10! 10! 10!

4 4 [4 32

Empirical V, evolution away from criticality

for a ReLU network

cly) =025 cly) = 4.00
1074 - 107! = —— (@, B,7,8) = (0,0,0,0
o 1018 = —— (a,B,7,8) = (0,1,0,1
N s (@,B.7.8)= (0,022
10716 - L T (@B.7.8)=(0,1,03
2 2 —— (a.B,7,6)=(0,0,0,0) 10 (., B,7,8) = (0,0,2,3
N —— (&,B,7,8)=(0,1,0,1) 100 = —— (&,8,7,8) = (0,1,2,3
S0 s e (@,B,7,8) = (0,0,2,2) 106 -
10°3% - —— (a,B,7,6) =(0,1,0,3) o - /
o (. B,7,8) = (0,0,2,3) o
e (a,B,7,8) = (0,1,2,3)
10746 = Lo . ,o1073 - — !
10! 10!
J4)4

)
)
)
)
)
)

33

Recursions seem very useful.

34

Recursions seem very useful.

But: They are tedious to derive

34

Recursions seem very useful.

But: They are tedious to derive

In QFT

This is done with Feynman diagrams

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams
+ Diagrammatic representation of algebraic expressions

34

Recursions seem very useful.

But: They are tedious to derive

In QFT

This is done with Feynman diagrams
+ Diagrammatic representation of algebraic expressions
« Careful rules specify what diagrams are allowed

34

Recursions seem very useful.

But: They are tedious to derive

In QFT

This is done with Feynman diagrams
+ Diagrammatic representation of algebraic expressions
« Careful rules specify what diagrams are allowed
+ Each diagram corresponds to a term at a certain order

34

» Aug 2025

Finite-Width Neural Tangent Kernels
from Feynman Diagrams

Max Guillen** Philipp Misof *¢ Jan E. Gerken?

Abstract

Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks.
In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding
full analytic control over the training dynamics. However, at infinite width, important properties of
training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be
included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman
diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the

35

Recursions from Feynman diagrams

Already existed for preactivation recursions

36

Recursions from Feynman diagrams

Already existed for preactivation recursions

We extend this to joint preactivation-NTK statistics

36

Recursions from Feynman diagrams

Already existed for preactivation recursions
We extend this to joint preactivation-NTK statistics

Example: F recursion

36

Recursions from Feynman diagrams

Already existed for preactivation recursions
We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.

36

Recursions from Feynman diagrams

New Recursion: First order correction ©113(9) to the infinite width NTK ©103(0)

._
®
I

4
() e
-8

3

"

4
‘B
o .
5

+
~(D
P) o
5]

+
i&chjo-..
Zq i‘\'
+

b4
<@
s
2

1 gllHe+)
n_zell

37

Solving the V, recursion [WIP]

38

Solving the V, recursion [WIP]

L) L e
n?v(alw)(a?)tm) Ty (C

(C%H)

2
77) Z V(ﬁlﬁ2)(ﬁ3ﬁ4)

Ng—1 4)

B1,...,04€D

X <Ua30a4 (253254 - 95354»(,‘(2) +0 <

2
W) [<0a10a20a30a4>6<€) _<0a10a2>6<€)<Ua30a4>6(£>]

(Ca1005(28,28, — 9815)) 60

1
n2

38

Solving the V, recursion [WIP]

1 (et B 1 (6+1)
ng(ala.z)(Q:$a4) - ny (C

(C‘(/f-i-l)

2
L) Z V(ﬁl:ﬁz)(ﬁsﬁ4)

Ng—1 4)

B1,...,04€D

X <Ua30a4 (253254 - 95354»(,‘(2) +0 <

2
W) [<0a10a20a30a4>6<€) _<0a10a2>6<€)<0a30a4>6(£>]

(Ca1005(28,28, — 9815)) 60

1
n2

38

Solving the V, recursion [WIP]

Layer 4 - Component (0, 0, 0, 0)

1750 1 —e8— analytic
—&— stats
1500 1

1250 4

1000 A

Vayayaa,

750 4

500 +

2504

T T T
10! 107 10°
M

Combining symbolic and numeric computations

+ Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).

40

Combining symbolic and numeric computations

+ Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
* Numerically cheaper

40

Combining symbolic and numeric computations

+ Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
* Numerically cheaper

40

Combining symbolic and numeric computations

* Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
* Numerically cheaper, but number of terms explodes fast.
+ Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[al]l)*sig(z[a2]))*K[bl, b3]*K[b2, b4] +GaussExpec(sig(z[al])*sig(z[a2]))*K[bl,

b4]xK[b2, b3] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]), z[a2]))*K[b1,

al]xK[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[al]l), z[al])*Derivative(sig(z[a2]),

z[a2]))*K[bl, al]xK[b2, b4]xK[b3, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*K[bl, a2]xK[b2, b3]xK[b4, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*xK[bl, a2]xK[b2, b4]xK[b3, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*xK[bl, b3]xK[b2, al]lxK[b4, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),
’
s

z[a2]))*K[bl, b3]xK[b2, a2]xK[b4, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2])
z[a2]))*xK[bl, b4]xK[b2, al]xK[b3, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2])
z[a2]))*K[bl, b4]xK[b2, a2]*K[b3, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]), (z[al],
2)))*K[bl, al]l*K[b2, b3]*K[b4, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]l), (z[al], 2)))*K[b1l,
al]xK[b2, b4]xK[b3, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]), (z[al], 2)))*K[bl, b3]*K[b2,
all*K[b4, al]

40

Summary

41

Summary

* NTKis a valuable tool to study NNs analytically

41

Summary

* NTKis a valuable tool to study NNs analytically
+ We extended it to equivariant NNs

41

Summary

* NTKis a valuable tool to study NNs analytically
+ We extended it to equivariant NNs
+ Can be used to study equivariance vs data augmentation

41

Summary

NTK is a valuable tool to study NNs analytically

We extended it to equivariant NNs

Can be used to study equivariance vs data augmentation
Introduced diagrammatic framework for finite width NTK statistics

41

Summary

NTK is a valuable tool to study NNs analytically

We extended it to equivariant NNs

Can be used to study equivariance vs data augmentation
Introduced diagrammatic framework for finite width NTK statistics
We implement solutions to the governing recursions

41

What's next?

42

What's next?

* Finite width corrections for orthogonal weights

42

What's next?

* Finite width corrections for orthogonal weights
+ Connection to other limits, e.g. the mean field limit

42

What's next?

* Finite width corrections for orthogonal weights
+ Connection to other limits, e.g. the mean field limit

But first

42

What's next?

* Finite width corrections for orthogonal weights
+ Connection to other limits, e.g. the mean field limit

But first

* Internship in Switzerland at Genentech (Roche) with Pan
Kessel

+ 10 months
+ About generative models for protein design

Genentech

42

Thank you for the last two years!

	The Neural Tangent Kernel
	Equivariance and Data Augmentation
	Beyond the strict limit with Feynman diagrams
	Conclusion and Outlook

