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Initialization

parameters sampled iid

WIS'E)?blg ~ N(07 1)
Training
- training data {(x;, y;) } /"
+ loss function L(y, y), empirical loss

L) =

ZL(}'i»NG(Xi))

Nirain

+ Training = Minimizing the empirical loss
+ Almost always Gradient Descent (GD) based.
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Assume Gradient Flow Learri
earning rate
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Training Dynamics

Assume Gradient Flow Learri
earning rate

do,(t) _ “de N ON) (ON(K)\T
i~ "do, Orlx,x) = 0, ( 20, )

Chain rule — -
Intuition: Similarity measure of gradients

at different inputs

dN Mtrain oL Lo .
— ©; is time-dependent and stochastic.
at ¢ ”;;f”’ aN ) :

(empirical) Neural Tangent Kernel
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What happens when we make the hidden layers very wide?

+ Obtain a centered Gaussian process
« With covariance (NNGP) kernel

E [N(x)N(x’)T} = K(x,x)I,,

Similarly

Freezing of the NTK

O(x,x") — E [6:(x,x)] = O(x, x")I,,
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What do we gain? is now deterministic and time-independent

Ntrain \/

o, oc
o __”Iz;@”’ IN(x;)

* Let's assume square loss
* Then we obtain a simple ODE for the NN mean 1:(x) = E [N;(X)]

Analytic solution

1 (X) = O(x, X)O (X, X) (T — e 1O*Xtyy

[ /

Train inputs Train labels
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How is the NTK computed for a given architecture? — Layer by layer
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Toy example: Learning sin(x)
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Toy example: Learning sin(x)

3-layer MLPs with width 4096

1 @ training samples
predicted mean
=== predicted std
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Equivariant Neural Tangent Kernels

Philipp Misof ! Pan Kessel? Jan E. Gerken'

Abstract
Little is known about the training dynamics of
equivariant neural networks, in particular how
it compares to data augmented training of their
non-equivariant counterparts. Recently, neural
tangent kernels (NTKs) have emerged as a pow-
erful tool to analytically study the training dy-
namics of wide neural networks. In this work,
we take an important step towards a theoretical
understanding of training dynamics of equivari-
ant models by deriving neural tangent kernels for
a broad class of equivariant architectures based
on group convolutions. As a demonstration of
the capabilities of our framework, we show an in-
teresting relationship between data augmentation
and group convolutional networks. Specifically,
we prove that they share the same expected pre-

Schiitt et al., 2021; Unke et al., 2021). Other application

areas include particle physics (Bogatskiy et al., 2020), cos-

2019) and even fairness in large
I

23).

Recently, there has been a number of works which avoid
equivariant architectures but rely on data augmentation
to approximately learn equivariance, most notably Al-
phaFold3 (Abramson et al., 2024). This has the potential ad-
vantage that non-equivariant architectures may offer better
training dynamics, for example favorable scaling capabili-
ties. There en a vigorous debate on this subject with
some empirical works claiming superiority of equivariant ar-
chitectures (Gerken et al rehmer et al., 2024) while
others suggest the opposite (Wang et al., 2024; Abramson
etal., 2024). One challenging aspect to conclusively settle
the matter is that there is no good theoretical understanding
of how the equivariant and the purely augmentation-based
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Schiitt et al., 2021; Unke et al., 2021). Other application
areas include particle physics (Bogatskiy et al., 2020), cos-
mology (Perraudin et al., 2019) and even fairness in large
language models (Basu et al., 2023).

Recently, there has been a number of works which avoid
equivariant architectures but rely on data augmentation
to approximately learn equivariance, most notably Al-
phaFold3 (Abramson et al., 2024). This has the potential ad-
vantage that non-equivariant architectures may offer better
training dynamics, for example favorable scaling capabili-
ties. There en a vigorous debate on this subject with
some empirical works claiming superiority of equivariant ar-
chitectures (Gerken et a rehmer et al., 2024) while
others suggest the opposite (Wang et al., 2024; Abramson
etal., 2024). One challenging aspect to conclusively settle
the matter is that there is no good theoretical understanding
of how the equivariant and the purely augmentation-based
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Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X — RY
O
2-» ,,
@ l Orientation l @ lN lf\/
i out (9)
detection N () 225 pon(@)IN ()
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This is called equivariance



Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)

Classic convolution layer
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Convolutional Neural Networks (CNNs)

Classic convolution layer
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Equivariant w.r.t. translation group G = RY
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Group Convolutional Neural Networks (GCNNs)
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Generalization of a CNN to other groups G acting on a homogeneous space X.
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Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

IVO()](g) = J% /X dh (g~ h) [(F)](h)

group element J

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N((—i—l Z)
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The Equivariant NTK

ouL(f,f) =

B2 e (M

!

Evaluation point in group space

oo-width limit: # channels —

(g '>>T]
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Kernel Recursions of the Group Convolutional Layer

13



Kernel Recursions of the Group Convolutional Layer

(E-H) /
nggl ’

@) f f’

gh, g/h

13



Kernel Recursions of the Group Convolutional Layer
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How to implement this depends on the group G and the space X.
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How to implement this depends on the group G and the space X.

We cover
Roto-translations in the plane Rotations on SO(3)
G =C*x 72 G = S0(3)
X=12* X =82

Q
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SO(3) Implementation
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SO(3) Implementation
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SO(3) Implementation

1
G0 = o [ SKuslh 1)

How can we compute this integral efficiently?
— using the Fourier transform on compact groups

— ALl

(k@ F, 7]

/ dR / dR' K 3. (F, ') Dy (R) Dy (R')

mn,m’n’

- Dl are the Wigner D-matrices, irreps of SO(3)

* leNg,mne{-l... I

+ for the first layer ¢ = 1, spherical harmonics Y;" are used instead of Wigner D-matrices
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Fourier Recursion

Kernel recursion in Fourier space
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Fourier Recursion

Kernel recursion in Fourier space
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Fourier Recursion

Kernel recursion in Fourier space

[K(6+1)(f f/)]inlnm o = 2/ =

Approximation: truncate for/ > L.

/

0w 5n —n’ Z( )n P[Kf(f f/)]

p=—I

Straightforward to implement ... right?

11
mp,m’ (—p)
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Goal: Integrate it in the neural-tangents library (written in JAX).

=) () ook / nouraangonts

<> Code () Issues €2 Pullrequests 7 ) Discussions () Actions [ Projects [0 Wiki @ Secury | Insights

This repository was archived by the owner on May 6, 2025. Itis now read-only.
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Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S? provided by s2fft.
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Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S? provided by s2fft.

Contributors #

Thanks goes to these wonderful people (

Releases o

V130
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Atoms’ environments are
represented as signals on
the sphere
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Testing the SO(3) NTK on molecular data (QM9)

—e— S0(3)

Atoms’ environments are

. —e— MLP
represented as signals on
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Testing the SO(3) NTK on molecular data (QM9)

—e— S0(3)

Atoms’ environments are

. —e— MLP
represented as signals on
the sphere

MAE (meV)

,_.
2

fi,z,p ()=

>

jizj=2

1 T 1 2

AN

HrI}”p 102
Training Set Size

10

» Performance boost due to 3d-rotation invariance extends to the co-width limit
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Often, equivariance is not enforced but learned approximately through data
augmentation
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Often, equivariance is not enforced but learned approximately through data
augmentation

Can we compare the two approaches theoretically?
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NTK under data augmentation
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NTK under data augmentation

* Full data augmentation
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NTK under data augmentation

* Full data augmentation

Mtrain
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NTK under data augmentation

* Full data augmentation

Ntrain

DY — U U{ (preg(9)fi, Preg(9)yi) }

i=1 geG
* Invariance < preg = id

1159 evolves like a non-augmented NN mean 4 with NTK

f f/ |G| z;@ f preg )
ge
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Data Augmentation < Group Convolutional (GC) NNs
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Data Augmentation < Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

/ 1 !
O(1.1) = oy .99 0" (F.pes(@)F)

~
same effective kernel
resulting from data augmentation

At co-width and quadratic £:

» Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.
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Architecture correspondence

Fc(l) — > g —> Fc(3) > O > e > Fc(L)

Lifing — o — gconv® — o —— - — gconv) —— GPool

All group convolutions with global filter support S = G or S. = X for the lifting layer.
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Data Augmentation vs. Group Convolutions at finite width
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+ Data augmented CNN vs C4 x R?
GCNN on MNIST
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« Compare Lo-difference of
averaged outputs
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Data Augmentation vs. Group Convolutions at finite width
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ﬂé] ------- S i Ensemble Size 3
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GCNN on MNIST 2 S S
: 8
« Compare Lo-difference of S04 SIS TS S QU - mm———— 1
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The Setup

We now focus on preactivations

1 _
Z_(Z) (X) _ = Z W_(_E) O'(Zj(z U(X)) +bl_(€)
-1 j=1 S———r

N (=1) before
We are now interested in the distribution of the output at initialization

p(20)

Decompose it layer by layer

p (z(@Jrl)\D) _ /H dZ’ ) @Jrl ))p<z(t)|zD)

Normal dist.
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Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

1
Q1o __ a1 _
gruIer = K102 4 O (n>

v(alag)(a3a4) _ lv(alag)(asrm) +0 (12>
n n

where V(ca2)(esas) — e[z 7. .z, 7,,]isthe 4th cumulant.
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+ Analysis can be extended to joint distribution
pz",09 D)

« Atorder O(}), fully characterized by a closed system of recursions containing K, ©
and V, as well as joint cumulants A, B, D, F of degree 4.

KO Vy),A(e) B8O p® F®
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Recursions

+ have been used to find optimal initialization hyperparameters (Criticality)
+ Explain qualitative differences between activation functions
+ Explain Exploding and Vanishing Gradients
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Empirical V, evolution at criticality
for a ReLU network
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Empirical V, evolution away from criticality

for a ReLU network
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Recursions seem very useful.

But: They are tedious to derive

In QFT

This is done with Feynman diagrams
+ Diagrammatic representation of algebraic expressions
« Careful rules specify what diagrams are allowed
+ Each diagram corresponds to a term at a certain order
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Finite-Width Neural Tangent Kernels
from Feynman Diagrams

Max Guillen** Philipp Misof *¢ Jan E. Gerken?

Abstract

Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks.
In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding
full analytic control over the training dynamics. However, at infinite width, important properties of
training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be
included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman
diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the
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Recursions from Feynman diagrams

Already existed for preactivation recursions
We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.
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Recursions from Feynman diagrams

New Recursion: First order correction ©113(9) to the infinite width NTK ©103(0)
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Solving the V, recursion [WIP]

Layer 4 - Component (0, 0, 0, 0)
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Combining symbolic and numeric computations

* Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
* Numerically cheaper, but number of terms explodes fast.
+ Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[al]l)*sig(z[a2]))*K[bl, b3]*K[b2, b4] +GaussExpec(sig(z[al])*sig(z[a2]))*K[bl,

b4]xK[b2, b3] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]), z[a2]))*K[b1,

al]xK[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[al]l), z[al])*Derivative(sig(z[a2]),

z[a2]))*K[bl, al]xK[b2, b4]xK[b3, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*K[bl, a2]xK[b2, b3]xK[b4, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*xK[bl, a2]xK[b2, b4]xK[b3, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),

z[a2]))*xK[bl, b3]xK[b2, al]lxK[b4, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2]),
’
s

z[a2]))*K[bl, b3]xK[b2, a2]xK[b4, al] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2])
z[a2]))*xK[bl, b4]xK[b2, al]xK[b3, a2] +GaussExpec(Derivative(sig(z[al]), z[al])*Derivative(sig(z[a2])
z[a2]))*K[bl, b4]xK[b2, a2]*K[b3, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]), (z[al],
2)))*K[bl, al]l*K[b2, b3]*K[b4, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]l), (z[al], 2)))*K[b1l,
al]xK[b2, b4]xK[b3, al] +GaussExpec(sig(z[a2])*Derivative(sig(z[al]), (z[al], 2)))*K[bl, b3]*K[b2,
all*K[b4, al]
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Summary

NTK is a valuable tool to study NNs analytically

We extended it to equivariant NNs

Can be used to study equivariance vs data augmentation
Introduced diagrammatic framework for finite width NTK statistics
We implement solutions to the governing recursions
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What's next?

* Finite width corrections for orthogonal weights
+ Connection to other limits, e.g. the mean field limit

But first

* Internship in Switzerland at Genentech (Roche) with Pan
Kessel

+ 10 months
+ About generative models for protein design

Genentech
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