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Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .
• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output
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Initialization

parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output
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Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.
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What happens when we make the hidden layers very wide?

...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL
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What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss

• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5



How is the NTK computed for a given architecture?

→ Layer by layer

NNGP

NTK 

NNGP

NTK 

infinite width

Layer-specific
kernel recursions

NN layer

finite width
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How is the NTK computed for a given architecture? → Layer by layer

→ K(3),Θ(3)

NNGP

NTK 

NNGP

NTK 

infinite width

Layer-specific

kernel recursions
NN layer

finite width
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How is the NTK computed for a given architecture? → Layer by layer

→ K(3),Θ(4)

NNGP

NTK 

NNGP

NTK 

infinite width

Layer-specific

kernel recursions
NN layer

finite width
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Toy example: Learning sin(x)

7



Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3
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1 training samples
predicted mean
predicted std

3-layer MLPs with width    8
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Toy example: Learning sin(x)
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Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3
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Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3
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1 training samples
predicted mean
predicted std

3-layer MLPs with width 4096
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Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X → Rd

Orientation
detection

f ρin(g)(f)

N (f) ρout(g)[N (f)]

ρin(g)

N N

ρout(g)

∀g ∈ G

This is called equivariance

9
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Convolutional Neural Networks (CNNs)

Classic convolution layer

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

filter support domain of input signal

filter

Equivariant w.r.t. translation group G = Rd

(https://en.wikipedia.org/wiki/

Convolutional_neural_network)
10
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Group Convolutional Neural Networks (GCNNs)

Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)
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The Equivariant NTK

Θ
(`)
g,g′(f , f

′) =

E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit: # channels → ∞
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Kernel Recursions of the Group Convolutional Layer

K(`+1)
g,g′ (f , f ′) =

1

vol(Sκ)

∫
Sκ

dh K(`)
gh,g′h(f , f

′)

Θ
(`+1)
g,g′ (f , f ′) = K(`+1)

g,g′ (f , f ′) +
1

vol(Sκ)

∫
Sκ

dh Θ
(`)
gh,g′h(f , f

′)

13
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How to implement this depends on the group G and the space X.

We cover

Roto-translations in the plane

G = C4 n Z2

X = Z2

Rotations on SO(3)

G = SO(3)
X = S2

14
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SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl
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Fourier Recursion

Kernel recursion in Fourier space

[ ̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement . . . right?
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Goal: Integrate it in the neural-tangents library (written in JAX).

17



Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S2 provided by s2fft.
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Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere (Esteves, Slotine,

and Makadia 2023)

fi,z,p(x) =∑
j:zj=z

ziz
‖rij‖p e

− 1
β

(
rij

‖rij‖
·x−1

)2

Performance boost due to 3d-rotation invariance extends to the ∞-width limit
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Often, equivariance is not enforced but learned approximately through data
augmentation

Can we compare the two approaches theoretically?
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NTK under data augmentation

• Full data augmentation

Daug =

ntrain⋃
i=1

⋃
g∈G

{(ρreg(g)fi, ρ̃reg(g)yi)},

• Invariance ↔ ρ̃reg = id
• µaug

t evolves like a non-augmented NN mean µt with NTK

Θ(f, f ′) =
1

|G|
∑
g∈G

Θaug(f, ρreg(g)f ′)

21
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Data Augmentation ↔ Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

ΘGC(f , f ′) =
1

vol(G)

∫
G
dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸

same effective kernel
resulting from data augmentation

At ∞-width and quadratic L:

Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22
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Architecture correspondence

FC(1) σ FC(3) σ … FC(L)

Lifting σ GConv(3) σ … GConv(L) GPool

All group convolutions with global filter support S`κ = G or S1κ = X for the lifting layer.
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Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 nR2

GCNN on MNIST
• Compare L2-difference of

averaged outputs
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1 The Neural Tangent Kernel

2 Equivariance and Data Augmen-
tation

3 Beyond the strict limit with Feyn-
man diagrams

4 Conclusion and Outlook



Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:

• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L
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Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)
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The Setup
We now focus on preactivations

z(`)i (x) =
1

√n`−1

n`−1∑
j=1

W(`)
ij σ(z(`−1)

j (x))︸ ︷︷ ︸
N (`−1) before

+b(`)i

We are now interested in the distribution of the output at initialization

p
(
z(L)|D

)
Decompose it layer by layer Notation: z(`)i;α = z(`)i (xα)

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))︸ ︷︷ ︸
Normal dist.

p(z(`)|D)

27
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p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4
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Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

gα1α2 = Kα1α2 +O
(
1

n

)
v(α1α2)(α3α4) =

1

n
V(α1α2)(α3α4) +O

(
1

n2

)
where V(α1α2)(α3α4) = Ec[zα1 , zα2 , zα3 , zα4 ] is the 4th cumulant.
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Statistics Described by Recursion System

• Analysis can be extended to joint distribution

p(z(`),Θ(`)|D)

• At order O(1n ), fully characterized by a closed system of recursions containing K,Θ
and V4 as well as joint cumulants A, B,D, F of degree 4.

K(`), V(`)
4 ,A(`), B(`),D(`), F(`)

−→ K(`+1),Θ(`), V(`+1)
4 ,A(`+1), B(`+1),D(`+1), F(`+1) +O

(
1

n2

)
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and V4 as well as joint cumulants A, B,D, F of degree 4.
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Recursions

• have been used to find optimal initialization hyperparameters (Criticality)

• Explain qualitative differences between activation functions
• Explain Exploding and Vanishing Gradients

31



Recursions

• have been used to find optimal initialization hyperparameters (Criticality)
• Explain qualitative differences between activation functions

• Explain Exploding and Vanishing Gradients

31



Recursions

• have been used to find optimal initialization hyperparameters (Criticality)
• Explain qualitative differences between activation functions
• Explain Exploding and Vanishing Gradients

31



Empirical V4 evolution at criticality
for a ReLU network
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Empirical V4 evolution away from criticality
for a ReLU network
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Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order
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Recursions from Feynman diagrams

Already existed for preactivation recursions (Banta et al. 2024)

We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.
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Recursions from Feynman diagrams

New Recursion: First order correction Θ{1}(`) to the infinite width NTK Θ{0}(`)
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Solving the V4 recursion [WIP]

1

n`
V(`+1)
(α1α2)(α3α4)

=
1

n`

(
C(`+1)
W

)2
[〈σα1σα2σα3σα4〉G(`) − 〈σα1σα2〉G(`)〈σα3σα4〉G(`) ]

+
1

n`−1

(
C(`+1)
W

)2

4

∑
β1,...,β4∈D

V(β1β2)(β3β4)
(`) 〈σα1σα2(zβ1zβ2 − gβ1β2)〉G(`)

× 〈σα3σα4(zβ3zβ4 − gβ3β4)〉G(`) +O
(

1

n2

)
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Solving the V4 recursion [WIP]
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Combining symbolic and numeric computations

• Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).

• Numerically cheaper

, but number of terms explodes fast.
• Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1, b3]*K[b2, b4] +GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1,

b4]*K[b2, b3] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]), z[a2]))*K[b1,

a1]*K[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a1]*K[b2, b4]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b3]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b4]*K[b3, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a1]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a2]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a1]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a2]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1],

2)))*K[b1, a1]*K[b2, b3]*K[b4, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1,

a1]*K[b2, b4]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1, b3]*K[b2,

a1]*K[b4, a1]

...
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Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions
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What’s next?

• Finite width corrections for orthogonal weights
• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design
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Thank you for the last two years!


	The Neural Tangent Kernel
	Equivariance and Data Augmentation
	Beyond the strict limit with Feynman diagrams
	Conclusion and Outlook

