
The Neural Tangent Kernel
Equivariance, Data Augmentation and Corrections from
Feynman Diagrams
Philipp Misof

Department of Mathematical Sciences, Division of Algebra and Geometry

August 28, 2025

0

mailto:misof@chalmers.se

1 The Neural Tangent Kernel

2 Equivariance and Data Augmen-
tation

3 Beyond the strict limit with Feyn-
man diagrams

4 Conclusion and Outlook

Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .
• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output

1

Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .
• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output

1

Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .

• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output

1

Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .
• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output

1

Feedforward Neural Network (NN)
alias Multi-layer Perceptron (MLP)

• Is a map N (L) : Rd → RnL .
• Recursively defined via layers N (`)

N (`)(x) = σ

(
1

√
n`−1

W(`)N (`−1)(x) + b(`)
)
,

Activation function

weights biases

Input

for ` < L, N (L)(x) = W(L)N (L−1)(x).

• θµ ∈ {W(`)
ij , b(`)i }`,i,j are the parameters

Input
Output

1

Initialization

parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output

2

Initialization
parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output

2

Initialization
parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output

2

Initialization
parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output

2

Initialization
parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss

• Almost always Gradient Descent (GD) based.

Input
Output

2

Initialization
parameters sampled iid

W(`)
ij , b`i ∼ N (0, 1)

Training
• training data {(xi, yi)}ntrain

i=1

• loss function L(y, ŷ), empirical loss

L(θ) = 1

ntrain

∑
i

L(yi,Nθ(xi))

• Training = Minimizing the empirical loss
• Almost always Gradient Descent (GD) based.

Input
Output

2

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

Training Dynamics

Assume Gradient Flow

dθµ(t)
dt

= −η
dL
dθµ

Learning rate

Chain rule →

dN
dt

(x) = −η

ntrain∑
i=1

Θt(x, xi)
∂L

∂N (xi)

(empirical) Neural Tangent Kernel

Θt(x, x′) =
∑
µ

∂N (x)
∂θµ

(
∂N (x′)
∂θµ

)T

Intuition: Similarity measure of gradients
at different inputs

Θt is time-dependent and stochastic.

3

What happens when we make the hidden layers very wide?

...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL

4

What happens when we make the hidden layers very wide?
...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL

4

What happens when we make the hidden layers very wide?
...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL

4

What happens when we make the hidden layers very wide?
...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL

4

What happens when we make the hidden layers very wide?
...

...

• Obtain a centered Gaussian process
• With covariance (NNGP) kernel

E
[
N (x)N (x′)T

]
= K(x, x′)InL

Due to the Law of Large Numbers.

Similarly

Freezing of the NTK
(Jacot, Gabriel, and Hongler 2018)

Θt(x, x′) → E [Θt(x, x′)] = Θ(x, x′)InL

4

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss

• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

What do we gain?

dN
dt

(x) = −η

ntrain∑
i=1

Θ(x, xi)
∂L

∂N (xi)

is now deterministic and time-independent

• Let’s assume square loss
• Then we obtain a simple ODE for the NN mean µt(x) = E [Nt(x)]

Analytic solution

µt(x) = Θ(x, X)Θ(X, X)−1(I− e−ηΘ(X,X)t)Y

Train inputs Train labels

5

How is the NTK computed for a given architecture?

→ Layer by layer

NNGP

NTK

NNGP

NTK

infinite width

Layer-specific
kernel recursions

NN layer

finite width

6

How is the NTK computed for a given architecture? → Layer by layer

NNGP

NTK

NNGP

NTK

infinite width

Layer-specific

kernel recursions
NN layer

finite width

6

How is the NTK computed for a given architecture? → Layer by layer

→ K(3),Θ(3)

NNGP

NTK

NNGP

NTK

infinite width

Layer-specific

kernel recursions
NN layer

finite width

6

How is the NTK computed for a given architecture? → Layer by layer

→ K(3),Θ(4)

NNGP

NTK

NNGP

NTK

infinite width

Layer-specific

kernel recursions
NN layer

finite width

6

How is the NTK computed for a given architecture? → Layer by layer

→ K(3),Θ(4)

NNGP

NTK

NNGP

NTK

infinite width

Layer-specific
kernel recursions

NN layer

finite width

6

Toy example: Learning sin(x)

7

Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1 training samples
predicted mean
predicted std

3-layer MLPs with width 8

7

Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1 training samples
predicted mean
predicted std

3-layer MLPs with width 64

7

Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1 training samples
predicted mean
predicted std

3-layer MLPs with width 256

7

Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1 training samples
predicted mean
predicted std

3-layer MLPs with width 1024

7

Toy example: Learning sin(x)

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1 training samples
predicted mean
predicted std

3-layer MLPs with width 4096

7

1 The Neural Tangent Kernel

2 Equivariance and Data Augmen-
tation

3 Beyond the strict limit with Feyn-
man diagrams

4 Conclusion and Outlook

Presented at the ICML
2025 in Vancouver

8

Presented at the ICML
2025 in Vancouver

8

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X → Rd

Orientation
detection

f ρin(g)(f)

N (f) ρout(g)[N (f)]

ρin(g)

N N

ρout(g)

∀g ∈ G

This is called equivariance

9

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X → Rd

Orientation
detection

f ρin(g)(f)

N (f) ρout(g)[N (f)]

ρin(g)

N N

ρout(g)

∀g ∈ G

This is called equivariance

9

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X → Rd

Orientation
detection

f ρin(g)(f)

N (f) ρout(g)[N (f)]

ρin(g)

N N

ρout(g)

∀g ∈ G

This is called equivariance

9

Symmetries in Machine Learning

Want to enforce symmetry w.r.t a group G acting on the input signal f : X → Rd

Orientation
detection

f ρin(g)(f)

N (f) ρout(g)[N (f)]

ρin(g)

N N

ρout(g)

∀g ∈ G

This is called equivariance

9

Convolutional Neural Networks (CNNs)

Classic convolution layer

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

filter support domain of input signal

filter

Equivariant w.r.t. translation group G = Rd

(https://en.wikipedia.org/wiki/

Convolutional_neural_network)
10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Neural Networks (CNNs)

Classic convolution layer

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

filter support domain of input signal

filter

Equivariant w.r.t. translation group G = Rd

(https://en.wikipedia.org/wiki/

Convolutional_neural_network)
10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Convolutional Neural Networks (CNNs)

Classic convolution layer

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

filter support domain of input signal

filter

Equivariant w.r.t. translation group G = Rd

(https://en.wikipedia.org/wiki/

Convolutional_neural_network)
10

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network

Group Convolutional Neural Networks (GCNNs)

Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](y) =
1√
|Sκ|

∫
Rd

dx κ
(
x − y

)
f(x)

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](g) =
1√
|Sκ|

∫
X
dhκ

(
g−1h

)
[(f)](h)

group element

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](g) =
1√
|Sκ|

∫
X
dhκ

(
g−1h

)
[(f)](h)

group element

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)

11

Group Convolutional Neural Networks (GCNNs)
Generalization of a CNN to other groups G acting on a homogeneous space X.

[N (1)(f)](g) =
1√
|Sκ|

∫
X
dhκ

(
g−1h

)
[(f)](h)

group element

Remark: Subtle difference between the first (lifting) layer and subsequent layers

Equivariant w.r.t. the regular representation

Group pooling

N (`+1)(f) =
1

vol(G)

∫
G
dg [N (`)(f)](g)

11

The Equivariant NTK

Θ
(`)
g,g′(f , f

′) =

E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit: # channels → ∞

12

The Equivariant NTK

Θ
(`)
g,g′(f , f

′) =

E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit: # channels → ∞

12

The Equivariant NTK

Θ
(`)
g,g′(f , f

′) = E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit: # channels → ∞

12

The Equivariant NTK

Θ
(`)
g,g′(f , f

′) = E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit:

channels → ∞

12

The Equivariant NTK

Θ
(`)
g,g′(f , f

′) = E

[∑
µ

∂[N (`)(f)](g)
∂θµ

(
∂[N (`)(f ′)](g′)

∂θµ

)T
]

Evaluation point in group space

∞-width limit: # channels → ∞

12

Kernel Recursions of the Group Convolutional Layer

K(`+1)
g,g′ (f , f ′) =

1

vol(Sκ)

∫
Sκ

dh K(`)
gh,g′h(f , f

′)

Θ
(`+1)
g,g′ (f , f ′) = K(`+1)

g,g′ (f , f ′) +
1

vol(Sκ)

∫
Sκ

dh Θ
(`)
gh,g′h(f , f

′)

13

Kernel Recursions of the Group Convolutional Layer

K(`+1)
g,g′ (f , f ′) =

1

vol(Sκ)

∫
Sκ

dh K(`)
gh,g′h(f , f

′)

Θ
(`+1)
g,g′ (f , f ′) = K(`+1)

g,g′ (f , f ′) +
1

vol(Sκ)

∫
Sκ

dh Θ
(`)
gh,g′h(f , f

′)

13

Kernel Recursions of the Group Convolutional Layer

K(`+1)
g,g′ (f , f ′) =

1

vol(Sκ)

∫
Sκ

dh K(`)
gh,g′h(f , f

′)

Θ
(`+1)
g,g′ (f , f ′) = K(`+1)

g,g′ (f , f ′) +
1

vol(Sκ)

∫
Sκ

dh Θ
(`)
gh,g′h(f , f

′)

13

How to implement this depends on the group G and the space X.

We cover

Roto-translations in the plane

G = C4 n Z2

X = Z2

Rotations on SO(3)

G = SO(3)
X = S2

14

How to implement this depends on the group G and the space X.

We cover

Roto-translations in the plane

G = C4 n Z2

X = Z2

Rotations on SO(3)

G = SO(3)
X = S2

14

How to implement this depends on the group G and the space X.

We cover

Roto-translations in the plane

G = C4 n Z2

X = Z2

Rotations on SO(3)

G = SO(3)
X = S2

14

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}
• for the first layer ` = 1, spherical harmonics Ym

l are used instead of Wigner D-matrices

15

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?

→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}
• for the first layer ` = 1, spherical harmonics Ym

l are used instead of Wigner D-matrices

15

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}
• for the first layer ` = 1, spherical harmonics Ym

l are used instead of Wigner D-matrices

15

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}
• for the first layer ` = 1, spherical harmonics Ym

l are used instead of Wigner D-matrices

15

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}

• for the first layer ` = 1, spherical harmonics Ym
l are used instead of Wigner D-matrices

15

SO(3) Implementation

K(`+1)
R,R′ (f, f ′) =

1

8π2

∫
SO(3)

dS K(`)
RS,R′S(f, f

′)

How can we compute this integral efficiently?
→ using the Fourier transform on compact groups (Wigner transform on SO(3))

[
̂K(`)(f, f ′)

]l,l′
mn,m′n′

=

∫
dR

∫
dR′ K(`)

R,R′(f, f
′)Dl

mn(R)Dl′
m′n′(R

′)

• Dl
mn are the Wigner D-matrices, irreps of SO(3)

• l ∈ N0, m, n ∈ {−l, . . . , l}
• for the first layer ` = 1, spherical harmonics Ym

l are used instead of Wigner D-matrices
15

Fourier Recursion

Kernel recursion in Fourier space

[̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement . . . right?

16

Fourier Recursion

Kernel recursion in Fourier space

[̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement . . . right?

16

Fourier Recursion

Kernel recursion in Fourier space

[̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement . . . right?

16

Fourier Recursion

Kernel recursion in Fourier space

[̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement

. . . right?

16

Fourier Recursion

Kernel recursion in Fourier space

[̂K(`+1)(f, f ′)]l,l
′

mn,m′n′ =
1

2l + 1
δll′δn,−n′

l∑
p=−l

(−1)n−p[K̂`(f, f ′)]l,l
′

mp,m′(−p)

Approximation: truncate for l ≥ L.

Straightforward to implement . . . right?

16

Goal: Integrate it in the neural-tangents library (written in JAX).

17

Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S2 provided by s2fft.

18

Fortunately, Fast Fourier Transforms (FFT) on SO(3) and S2 provided by s2fft.

18

Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere (Esteves, Slotine,

and Makadia 2023)

fi,z,p(x) =∑
j:zj=z

ziz
‖rij‖p e

− 1
β

(
rij

‖rij‖
·x−1

)2

Performance boost due to 3d-rotation invariance extends to the ∞-width limit

19

Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere (Esteves, Slotine,

and Makadia 2023)

fi,z,p(x) =∑
j:zj=z

ziz
‖rij‖p e

− 1
β

(
rij

‖rij‖
·x−1

)2

Performance boost due to 3d-rotation invariance extends to the ∞-width limit

19

Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere (Esteves, Slotine,

and Makadia 2023)

fi,z,p(x) =∑
j:zj=z

ziz
‖rij‖p e

− 1
β

(
rij

‖rij‖
·x−1

)2

Performance boost due to 3d-rotation invariance extends to the ∞-width limit

19

Testing the SO(3) NTK on molecular data (QM9)

Atoms’ environments are
represented as signals on
the sphere (Esteves, Slotine,

and Makadia 2023)

fi,z,p(x) =∑
j:zj=z

ziz
‖rij‖p e

− 1
β

(
rij

‖rij‖
·x−1

)2

Performance boost due to 3d-rotation invariance extends to the ∞-width limit

19

Often, equivariance is not enforced but learned approximately through data
augmentation

Can we compare the two approaches theoretically?

20

Often, equivariance is not enforced but learned approximately through data
augmentation

Can we compare the two approaches theoretically?

20

NTK under data augmentation

• Full data augmentation

Daug =

ntrain⋃
i=1

⋃
g∈G

{(ρreg(g)fi, ρ̃reg(g)yi)},

• Invariance ↔ ρ̃reg = id
• µaug

t evolves like a non-augmented NN mean µt with NTK

Θ(f, f ′) =
1

|G|
∑
g∈G

Θaug(f, ρreg(g)f ′)

21

NTK under data augmentation

• Full data augmentation

Daug =

ntrain⋃
i=1

⋃
g∈G

{(ρreg(g)fi, ρ̃reg(g)yi)},

• Invariance ↔ ρ̃reg = id
• µaug

t evolves like a non-augmented NN mean µt with NTK

Θ(f, f ′) =
1

|G|
∑
g∈G

Θaug(f, ρreg(g)f ′)

21

NTK under data augmentation

• Full data augmentation

Daug =

ntrain⋃
i=1

⋃
g∈G

{(ρreg(g)fi, ρ̃reg(g)yi)},

• Invariance ↔ ρ̃reg = id

• µaug
t evolves like a non-augmented NN mean µt with NTK

Θ(f, f ′) =
1

|G|
∑
g∈G

Θaug(f, ρreg(g)f ′)

21

NTK under data augmentation

• Full data augmentation

Daug =

ntrain⋃
i=1

⋃
g∈G

{(ρreg(g)fi, ρ̃reg(g)yi)},

• Invariance ↔ ρ̃reg = id
• µaug

t evolves like a non-augmented NN mean µt with NTK

Θ(f, f ′) =
1

|G|
∑
g∈G

Θaug(f, ρreg(g)f ′)

21

Data Augmentation ↔ Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

ΘGC(f , f ′) =
1

vol(G)

∫
G
dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸

same effective kernel
resulting from data augmentation

At ∞-width and quadratic L:

Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22

Data Augmentation ↔ Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

ΘGC(f , f ′) =
1

vol(G)

∫
G
dg ΘMLP(f , ρreg(g)f ′)

︸ ︷︷ ︸
same effective kernel

resulting from data augmentation

At ∞-width and quadratic L:

Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22

Data Augmentation ↔ Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

ΘGC(f , f ′) =
1

vol(G)

∫
G
dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸

same effective kernel
resulting from data augmentation

At ∞-width and quadratic L:

Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22

Data Augmentation ↔ Group Convolutional (GC) NNs

For a given MLP, we can construct a GCNN s.t.

ΘGC(f , f ′) =
1

vol(G)

∫
G
dg ΘMLP(f , ρreg(g)f ′)︸ ︷︷ ︸

same effective kernel
resulting from data augmentation

At ∞-width and quadratic L:

Expectation of a data augmented MLP equals the expectation of an GCNN
at all training times t.

22

Architecture correspondence

FC(1) σ FC(3) σ … FC(L)

Lifting σ GConv(3) σ … GConv(L) GPool

All group convolutions with global filter support S`κ = G or S1κ = X for the lifting layer.

23

Architecture correspondence

FC(1) σ FC(3) σ … FC(L)

Lifting σ GConv(3) σ … GConv(L) GPool

All group convolutions with global filter support S`κ = G or S1κ = X for the lifting layer.

23

Architecture correspondence

FC(1) σ FC(3) σ … FC(L)

Lifting σ GConv(3) σ … GConv(L) GPool

All group convolutions with global filter support S`κ = G or S1κ = X for the lifting layer.

23

Architecture correspondence

FC(1) σ FC(3) σ … FC(L)

Lifting σ GConv(3) σ … GConv(L) GPool

All group convolutions with global filter support S`κ = G or S1κ = X for the lifting layer.

23

Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 nR2

GCNN on MNIST
• Compare L2-difference of

averaged outputs

24

Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 nR2

GCNN on MNIST

• Compare L2-difference of
averaged outputs

24

Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 nR2

GCNN on MNIST
• Compare L2-difference of

averaged outputs

24

Data Augmentation vs. Group Convolutions at finite width

• Data augmented CNN vs C4 nR2

GCNN on MNIST
• Compare L2-difference of

averaged outputs

24

1 The Neural Tangent Kernel

2 Equivariance and Data Augmen-
tation

3 Beyond the strict limit with Feyn-
man diagrams

4 Conclusion and Outlook

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:

• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:

• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
• Kernel methods and Gaussian processes in general underperform compared to NNs

• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training

• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Taking n → ∞ allowed us to to derive exact analytic results for the training dynamics of
NNs.

But it also introduces artifacts compared to finite width NNs:
• Kernel methods and Gaussian processes in general underperform compared to NNs
• The empirical NTK changes during training
• No feature learning:

∆N (`)(x) = O
(
1

n

)
for ` < L

25

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

26

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

26

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

26

Idea: Derive finite-width corrections with techniques from quantum field theory (QFT)

26

The Setup
We now focus on preactivations

z(`)i (x) =
1

√n`−1

n`−1∑
j=1

W(`)
ij σ(z(`−1)

j (x))︸ ︷︷ ︸
N (`−1) before

+b(`)i

We are now interested in the distribution of the output at initialization

p
(
z(L)|D

)
Decompose it layer by layer Notation: z(`)i;α = z(`)i (xα)

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))︸ ︷︷ ︸
Normal dist.

p(z(`)|D)

27

The Setup
We now focus on preactivations

z(`)i (x) =
1

√n`−1

n`−1∑
j=1

W(`)
ij σ(z(`−1)

j (x))︸ ︷︷ ︸
N (`−1) before

+b(`)i

We are now interested in the distribution of the output at initialization

p
(
z(L)|D

)

Decompose it layer by layer Notation: z(`)i;α = z(`)i (xα)

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))︸ ︷︷ ︸
Normal dist.

p(z(`)|D)

27

The Setup
We now focus on preactivations

z(`)i (x) =
1

√n`−1

n`−1∑
j=1

W(`)
ij σ(z(`−1)

j (x))︸ ︷︷ ︸
N (`−1) before

+b(`)i

We are now interested in the distribution of the output at initialization

p
(
z(L)|D

)
Decompose it layer by layer Notation: z(`)i;α = z(`)i (xα)

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))︸ ︷︷ ︸
Normal dist.

p(z(`)|D)

27

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4

28

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4

28

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4

28

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4

28

p
(
z(`+1)|D

)
=

∫ ∏
i,α

dz(`)i;α p(z(`+1)|z(`))p(z(`)|D)

We know that p(z(`)|D) becomes a Normal distribution as n → ∞.

Instead of a Normal distribution with probability density function

p(z) =
1

Z
exp

(
−1

2
zTK−1z

)
= e−S[z]

make an ansatz for the action (Roberts, Yaida, and Hanin 2022)

S[z] =
1

2

∑
α1,α2∈D

gα1α2

n∑
i=1

zi;α1
zi;α2

− 1

2

∑
α1,...,α4∈D

v(α1α2)(α3α4)
n∑

i1,i2=1

zi1;α1
zi1;α2

zi2;α3
zi2;α4

28

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

gα1α2 = Kα1α2 +O
(
1

n

)
v(α1α2)(α3α4) =

1

n
V(α1α2)(α3α4) +O

(
1

n2

)
where V(α1α2)(α3α4) = Ec[zα1 , zα2 , zα3 , zα4] is the 4th cumulant.

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

gα1α2 = Kα1α2 +O
(
1

n

)
v(α1α2)(α3α4) =

1

n
V(α1α2)(α3α4) +O

(
1

n2

)
where V(α1α2)(α3α4) = Ec[zα1 , zα2 , zα3 , zα4] is the 4th cumulant.

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

gα1α2 = Kα1α2 +O
(
1

n

)
v(α1α2)(α3α4) =

1

n
V(α1α2)(α3α4) +O

(
1

n2

)

where V(α1α2)(α3α4) = Ec[zα1 , zα2 , zα3 , zα4] is the 4th cumulant.

29

Characterizing the Distribution Through its Cumulants

Using the ansatz, one can compare coefficients with cumulants to first order in 1/n:

gα1α2 = Kα1α2 +O
(
1

n

)
v(α1α2)(α3α4) =

1

n
V(α1α2)(α3α4) +O

(
1

n2

)
where V(α1α2)(α3α4) = Ec[zα1 , zα2 , zα3 , zα4] is the 4th cumulant.

29

Statistics Described by Recursion System

• Analysis can be extended to joint distribution

p(z(`),Θ(`)|D)

• At order O(1n), fully characterized by a closed system of recursions containing K,Θ
and V4 as well as joint cumulants A, B,D, F of degree 4.

K(`), V(`)
4 ,A(`), B(`),D(`), F(`)

−→ K(`+1),Θ(`), V(`+1)
4 ,A(`+1), B(`+1),D(`+1), F(`+1) +O

(
1

n2

)

30

Statistics Described by Recursion System

• Analysis can be extended to joint distribution

p(z(`),Θ(`)|D)

• At order O(1n), fully characterized by a closed system of recursions containing K,Θ
and V4 as well as joint cumulants A, B,D, F of degree 4.

K(`), V(`)
4 ,A(`), B(`),D(`), F(`)

−→ K(`+1),Θ(`), V(`+1)
4 ,A(`+1), B(`+1),D(`+1), F(`+1) +O

(
1

n2

)

30

Statistics Described by Recursion System

• Analysis can be extended to joint distribution

p(z(`),Θ(`)|D)

• At order O(1n), fully characterized by a closed system of recursions containing K,Θ
and V4 as well as joint cumulants A, B,D, F of degree 4.

K(`), V(`)
4 ,A(`), B(`),D(`), F(`)

−→ K(`+1),Θ(`), V(`+1)
4 ,A(`+1), B(`+1),D(`+1), F(`+1) +O

(
1

n2

)

30

Recursions

• have been used to find optimal initialization hyperparameters (Criticality)

• Explain qualitative differences between activation functions
• Explain Exploding and Vanishing Gradients

31

Recursions

• have been used to find optimal initialization hyperparameters (Criticality)
• Explain qualitative differences between activation functions

• Explain Exploding and Vanishing Gradients

31

Recursions

• have been used to find optimal initialization hyperparameters (Criticality)
• Explain qualitative differences between activation functions
• Explain Exploding and Vanishing Gradients

31

Empirical V4 evolution at criticality
for a ReLU network

102

103
|V

00
00
|

y = 36.97`1.19

`start = 7

102

103

|V
01

01
|

y = 17.81`1.31

`start = 10

101

102

103

|V
00

22
|

y = 14.57`1.49

`start = 10

101

`

101

102

|V
01

03
|

y = 3.40`1.42

`start = 10

101

`

100

101

102

|V
00

23
|

y = 3.51`1.47

`start = 10

101

`

100

101

102

|V
01

23
|

y = 2.35`1.55

`start = 10

C(`)
W = 2.0

32

Empirical V4 evolution away from criticality
for a ReLU network

101

`

10−46

10−40

10−34

10−28

10−22

10−16

10−10

10−4

|V
α

β
γδ
|

C(`)
W = 0.25

(α ,β ,γ ,δ) = (0,0,0,0)

(α ,β ,γ ,δ) = (0,1,0,1)

(α ,β ,γ ,δ) = (0,0,2,2)

(α ,β ,γ ,δ) = (0,1,0,3)

(α ,β ,γ ,δ) = (0,0,2,3)

(α ,β ,γ ,δ) = (0,1,2,3)

101

`

10−3

100

103

106

109

1012

1015

1018

1021

C(`)
W = 4.00

(α ,β ,γ ,δ) = (0,0,0,0)

(α ,β ,γ ,δ) = (0,1,0,1)

(α ,β ,γ ,δ) = (0,0,2,2)

(α ,β ,γ ,δ) = (0,1,0,3)

(α ,β ,γ ,δ) = (0,0,2,3)

(α ,β ,γ ,δ) = (0,1,2,3)

33

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions

• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed

• Each diagram corresponds to a term at a certain order

34

Recursions seem very useful.

But: They are tedious to derive

In QFT
This is done with Feynman diagrams

• Diagrammatic representation of algebraic expressions
• Careful rules specify what diagrams are allowed
• Each diagram corresponds to a term at a certain order

34

35

Recursions from Feynman diagrams

Already existed for preactivation recursions (Banta et al. 2024)

We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.

36

Recursions from Feynman diagrams

Already existed for preactivation recursions (Banta et al. 2024)

We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.

36

Recursions from Feynman diagrams

Already existed for preactivation recursions (Banta et al. 2024)

We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.

36

Recursions from Feynman diagrams

Already existed for preactivation recursions (Banta et al. 2024)

We extend this to joint preactivation-NTK statistics

Example: F recursion

Generalization to higher orders follows the same principles.

36

Recursions from Feynman diagrams

New Recursion: First order correction Θ{1}(`) to the infinite width NTK Θ{0}(`)

37

Solving the V4 recursion [WIP]

1

n`
V(`+1)
(α1α2)(α3α4)

=
1

n`

(
C(`+1)
W

)2
[〈σα1σα2σα3σα4〉G(`) − 〈σα1σα2〉G(`)〈σα3σα4〉G(`)]

+
1

n`−1

(
C(`+1)
W

)2

4

∑
β1,...,β4∈D

V(β1β2)(β3β4)
(`) 〈σα1σα2(zβ1zβ2 − gβ1β2)〉G(`)

× 〈σα3σα4(zβ3zβ4 − gβ3β4)〉G(`) +O
(

1

n2

)

38

Solving the V4 recursion [WIP]

1

n`
V(`+1)
(α1α2)(α3α4)

=
1

n`

(
C(`+1)
W

)2
[〈σα1σα2σα3σα4〉G(`) − 〈σα1σα2〉G(`)〈σα3σα4〉G(`)]

+
1

n`−1

(
C(`+1)
W

)2

4

∑
β1,...,β4∈D

V(β1β2)(β3β4)
(`) 〈σα1σα2(zβ1zβ2 − gβ1β2)〉G(`)

× 〈σα3σα4(zβ3zβ4 − gβ3β4)〉G(`) +O
(

1

n2

)

38

Solving the V4 recursion [WIP]

1

n`
V(`+1)
(α1α2)(α3α4)

=
1

n`

(
C(`+1)
W

)2
[〈σα1σα2σα3σα4〉G(`) − 〈σα1σα2〉G(`)〈σα3σα4〉G(`)]

+
1

n`−1

(
C(`+1)
W

)2

4

∑
β1,...,β4∈D

V(β1β2)(β3β4)
(`) 〈σα1σα2(zβ1zβ2 − gβ1β2)〉G(`)

× 〈σα3σα4(zβ3zβ4 − gβ3β4)〉G(`) +O
(

1

n2

)

38

Solving the V4 recursion [WIP]

39

Combining symbolic and numeric computations

• Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).

• Numerically cheaper

, but number of terms explodes fast.
• Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1, b3]*K[b2, b4] +GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1,

b4]*K[b2, b3] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]), z[a2]))*K[b1,

a1]*K[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a1]*K[b2, b4]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b3]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b4]*K[b3, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a1]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a2]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a1]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a2]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1],

2)))*K[b1, a1]*K[b2, b3]*K[b4, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1,

a1]*K[b2, b4]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1, b3]*K[b2,

a1]*K[b4, a1]

...

40

Combining symbolic and numeric computations

• Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
• Numerically cheaper

, but number of terms explodes fast.

• Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1, b3]*K[b2, b4] +GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1,

b4]*K[b2, b3] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]), z[a2]))*K[b1,

a1]*K[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a1]*K[b2, b4]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b3]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b4]*K[b3, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a1]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a2]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a1]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a2]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1],

2)))*K[b1, a1]*K[b2, b3]*K[b4, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1,

a1]*K[b2, b4]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1, b3]*K[b2,

a1]*K[b4, a1]

...

40

Combining symbolic and numeric computations

• Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
• Numerically cheaper

, but number of terms explodes fast.

• Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1, b3]*K[b2, b4] +GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1,

b4]*K[b2, b3] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]), z[a2]))*K[b1,

a1]*K[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a1]*K[b2, b4]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b3]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b4]*K[b3, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a1]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a2]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a1]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a2]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1],

2)))*K[b1, a1]*K[b2, b3]*K[b4, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1,

a1]*K[b2, b4]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1, b3]*K[b2,

a1]*K[b4, a1]

...

40

Combining symbolic and numeric computations

• Most integrals can be reduced to 2d Gaussian integrals using integration by parts (IBP).
• Numerically cheaper, but number of terms explodes fast.
• Solution: Do IBP symbolically and create numeric functions from that.

GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1, b3]*K[b2, b4] +GaussExpec(sig(z[a1])*sig(z[a2]))*K[b1,

b4]*K[b2, b3] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]), z[a2]))*K[b1,

a1]*K[b2, b3]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a1]*K[b2, b4]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b3]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, a2]*K[b2, b4]*K[b3, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a1]*K[b4, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b3]*K[b2, a2]*K[b4, a1] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a1]*K[b3, a2] +GaussExpec(Derivative(sig(z[a1]), z[a1])*Derivative(sig(z[a2]),

z[a2]))*K[b1, b4]*K[b2, a2]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1],

2)))*K[b1, a1]*K[b2, b3]*K[b4, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1,

a1]*K[b2, b4]*K[b3, a1] +GaussExpec(sig(z[a2])*Derivative(sig(z[a1]), (z[a1], 2)))*K[b1, b3]*K[b2,

a1]*K[b4, a1]

...

40

Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions

41

Summary

• NTK is a valuable tool to study NNs analytically

• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions

41

Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs

• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions

41

Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation

• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions

41

Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics

• We implement solutions to the governing recursions

41

Summary

• NTK is a valuable tool to study NNs analytically
• We extended it to equivariant NNs
• Can be used to study equivariance vs data augmentation
• Introduced diagrammatic framework for finite width NTK statistics
• We implement solutions to the governing recursions

41

What’s next?

• Finite width corrections for orthogonal weights
• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design

42

What’s next?

• Finite width corrections for orthogonal weights

• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design

42

What’s next?

• Finite width corrections for orthogonal weights
• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design

42

What’s next?

• Finite width corrections for orthogonal weights
• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design

42

What’s next?

• Finite width corrections for orthogonal weights
• Connection to other limits, e.g. the mean field limit

But first

• Internship in Switzerland at Genentech (Roche) with Pan
Kessel

• 10 months
• About generative models for protein design

42

Thank you for the last two years!

	The Neural Tangent Kernel
	Equivariance and Data Augmentation
	Beyond the strict limit with Feynman diagrams
	Conclusion and Outlook

