Introduction to Machine Learning and Geometric Deep Learning

2025-08-29, PhD defence Oscar Carlsson, Department of Mathematical Sciences

Outline

- Machine learning
- Geometry and symmetries in machine learning
- My contributions

Introduction to ML

Examples of machine learning applications

- Language models
 - ChatGPT
 - Claude
 - Gemini
- AlphaFold
- Generative models
- Image analysis
 - Object detection
 - Semantic segmentation
 - Depth estimation
 - Classification

Machine learning models

Deep machine learning models

How humans and models differ in conceptualisation

Machine learning models are dumb!

How humans and models differ in conceptualisation

How humans and models differ in conceptualisation

Coffee cup

Coffee cup

Coffee cup

Goal

Use geometry and symmetry to improve and make networks more efficient

Tree

Tree

Invariant property

Invariant property

Direction of tree

Invariant property

Invariant property

Equivariant property

Mathematics: Groups

- Set of transformations acting on some object
- Any two transformations can be combined into a single in the set
- One can undo transformations

Mathematics: Groups

- Set of transformations acting on some object
- Any two transformations can be combined into a single in the set
- One can undo transformations

Often used to describe symmetries of objects

Mathematics: continuous groups, Lie groups

Dealing with geometry and symmetries in ML

Dealing with geometry and symmetries in ML:

Data augmentation

Dealing with geometry and symmetries in ML:

Data augmentation

Equivariance

Data augmentation

Equivariant networks

 $\mathcal{N}(g \triangleright_X x) = g \triangleright_Y \mathcal{N}(x)$ for all $g \in G$

Geometric Deep Learning

("Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges", Bronstein et al. 2021)

Questions

Equivariance Data augmentation

Questions

Data augmentation \leftarrow ? Equivariance

How does one deal with data on curved spaces?

Questions

Data augmentation \longleftrightarrow Equivariance

How does one deal with data on curved spaces?

Enconding symmetries mathematically?

Papers

- Paper I.: Jan E. Gerken, Jimmy Aronsson*, Oscar Carlsson*, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Geometric deep learning and equivariant neural networks". In: Artificial Intelligence Review (June 2023)
- Paper II.: Jan Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Equivariance versus Augmentation for Spherical Images". In: Proceedings of the 39th International Conference on Machine Learning (June 2022), pp. 7404-7421
- Paper III.: Oscar Carlsson*, Jan E. Gerken*, Hampus Linander, Heiner Spieß, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson Daniel "HEAL-SWIN: A Vision Transformer on the Sphere". In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2024), pp. 6067-6077
- Paper IV.: Elias Nyholm*, Oscar Carlsson*, Maurice Weiler, and Daniel Persson
 "Equivariant non-linear maps for neural networks on homogeneous spaces".

 Submitted (April 2025)

Papers: Mathematical foundations

- Paper I.: Jan E. Gerken, Jimmy Aronsson*, Oscar Carlsson*, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Geometric deep learning and equivariant neural networks". In: *Artificial Intelligence Review* (June 2023)
- Paper II.: Jan Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Equivariance versus Augmentation for Spherical Images". In: Proceedings of the 39th International Conference on Machine Learning (June 2022), pp. 7404-7421
- Paper III.: Oscar Carlsson*, Jan E. Gerken*, Hampus Linander, Heiner Spieß, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson Daniel "HEAL-SWIN: A Vision Transformer on the Sphere". In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2024), pp. 6067-6077
- Paper IV.: Elias Nyholm*, Oscar Carlsson*, Maurice Weiler, and Daniel Persson
 "Equivariant non-linear maps for neural networks on homogeneous spaces".

 Submitted (April 2025)

Papers: Vision applications

- Paper I.: Jan E. Gerken, Jimmy Aronsson*, Oscar Carlsson*, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Geometric deep learning and equivariant neural networks". In: Artificial Intelligence Review (June 2023)
- Paper II.: Jan Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson "Equivariance versus Augmentation for Spherical Images". In: Proceedings of the 39th International Conference on Machine Learning (June 2022), pp. 7404-7421
- Paper III.: Oscar Carlsson*, Jan E. Gerken*, Hampus Linander, Heiner Spieß, Fredrik Ohlsson, Christoffer Petersson, and Daniel Persson Daniel "HEAL-SWIN: A Vision Transformer on the Sphere". In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2024), pp. 6067-6077
- Paper IV.: Elias Nyholm*, Oscar Carlsson*, Maurice Weiler, and Daniel Persson "Equivariant non-linear maps for neural networks on homogeneous spaces". Submitted (April 2025)

End of general introduction