
Equivariant Neural Networks:
From Training Dynamics to Topology

Jan E. Gerken

WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

1



Symmetries in deep learning

2



Symmetries in deep learning

2



Symmetries in deep learning

rotate

2



Symmetries in deep learning

rotate

network network

2



Symmetries in deep learning

rotate

network network

rotate

2



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

2



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

network

rotation image

2



Equivariance

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

network

rotation image

2



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Training Dynamics

A lot of work on equivariant architectures

Training dynamics much less studied

4



Training Dynamics

A lot of work on equivariant architectures

Training dynamics much less studied

4



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ

5



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ

5



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞

6



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞

6



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

6



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

6



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

6



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

6



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

7



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

7



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

7



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

learning rate

7



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

learning rate

train labels

7



Equivariant Neural Tangent Kernels

8



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

9



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

9



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

9



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

9



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg

● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

10



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting

σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ

GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv

σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ

GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv

GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

11



NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[N(`)(f )](g) ([N(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E
⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[N(`)(f )](g)
∂θ(`′)

(∂[N
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦

12



NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[N(`)(f )](g) ([N(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E
⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[N(`)(f )](g)
∂θ(`′)

(∂[N
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦

12



NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[N(`)(f )](g) = ∫Gdg κ(g
−1h) [N(`−1)(f )](h)

13



NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[N(`)(f )](g) = ∫Gdg κ(g
−1h) [N(`−1)(f )](h)

13



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0

Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′)

Θ
(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′)

Θ
(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′)

Θ
(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′)

Θ
(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′)

Θ(f ,f ′)

14



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)

14



NTKs of MLPs and GCNNs

● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting

σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ

GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv

σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ

GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv

GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

15



Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width. Predictions of infinite ensembles agree.

16



Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width. Predictions of infinite ensembles agree.

16



Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width. Predictions of infinite ensembles agree.
16



Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x) ∀t

∀x

at infinite width. Predictions of infinite ensembles agree.
16



Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x) ∀t ∀x

at infinite width. Predictions of infinite ensembles agree.
16



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug

before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x

17



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x
17



Data augmentation of CNNs

● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

18



Data augmentation of CNNs
● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

18



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

18



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

18



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

18



Experiments

19



Equivariant NTKs for medical image classification

0 200 400 600 800 1000
Training Set Size

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

C4-CNN
CNN

20



Equivariant NTKs for molecular property regression

102 103

Training Set Size

103M
A

E 
(m

eV
)

SO(3)
MLP

21



Convergence of augmented CNNs to GCNNs

22



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on MNIST, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

22



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on MNIST, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

22



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on CIFAR10, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

22



Learning Topology
with

Gauge Equivariant Neural Networks

23



Gauge symmetry
● So far, we discussed global symmetries:

[ρreg(g)f ](x) = f (ρ(g−1)x) g ∈ G

● Now, extend to local (gauge) symmetries:

[ρgauge(g)f ](x) = f (ρ(g−1x )x) gx ∈ G

● For instance, choose basis in tangent space at each point

This symmetry is exponentially larger!

Ggauge = G∣X ∣

24



Gauge symmetry
● So far, we discussed global symmetries:

[ρreg(g)f ](x) = f (ρ(g−1)x) g ∈ G

● Now, extend to local (gauge) symmetries:

[ρgauge(g)f ](x) = f (ρ(g−1x )x) gx ∈ G

● For instance, choose basis in tangent space at each point

This symmetry is exponentially larger!

Ggauge = G∣X ∣

24



Gauge symmetry
● So far, we discussed global symmetries:

[ρreg(g)f ](x) = f (ρ(g−1)x) g ∈ G

● Now, extend to local (gauge) symmetries:

[ρgauge(g)f ](x) = f (ρ(g−1x )x) gx ∈ G

● For instance, choose basis in tangent space at each point

This symmetry is exponentially larger!

Ggauge = G∣X ∣

24



Gauge symmetry
● So far, we discussed global symmetries:

[ρreg(g)f ](x) = f (ρ(g−1)x) g ∈ G

● Now, extend to local (gauge) symmetries:

[ρgauge(g)f ](x) = f (ρ(g−1x )x) gx ∈ G

● For instance, choose basis in tangent space at each point

This symmetry is exponentially larger!

Ggauge = G∣X ∣
24



Topological materials
● Need to choose an arbitrary basis for quantum states at each
point in momentum space

Global Symmetry
Same transformation everywhere

Gauge Symmetry
Independent transformation at each point

Each arrow pair represents a basis choice for quantum states at that point in momentum space

U(N) gauge symmetry at each point

Topology of states determines physical properties and is
independent of choice of basis

25



Topological materials
● Need to choose an arbitrary basis for quantum states at each
point in momentum space

Global Symmetry
Same transformation everywhere

Gauge Symmetry
Independent transformation at each point

Each arrow pair represents a basis choice for quantum states at that point in momentum space

U(N) gauge symmetry at each point

Topology of states determines physical properties and is
independent of choice of basis

25



Topological materials
● Need to choose an arbitrary basis for quantum states at each
point in momentum space

Global Symmetry
Same transformation everywhere

Gauge Symmetry
Independent transformation at each point

Each arrow pair represents a basis choice for quantum states at that point in momentum space

U(N) gauge symmetry at each point

Topology of states determines physical properties and is
independent of choice of basis

25



The Chern number
● The topology is characterized by the Chern number

C = 1
2π i ∫ Tr(F(k))d2k

● Higher-dimensional analog of winding number

w = 1
2π ∮γ dθ

26



The Chern number
● On a discrete lattice in 2d, it is given by

C = ∑
i, j

Im(Tr(logWi j)) ∈ Z
Wilson loop, N × Nmatrix

● The Chern number is invariant under gauge transformations

Wi j → Ω†i jWi jΩi j with Ωi j ∈ U(N)

Learning problem: Predict C given {Wi j ∣ (i, j) ∈ lattice}

27



The Chern number
● On a discrete lattice in 2d, it is given by

C = ∑
i, j

Im(Tr(logWi j)) ∈ Z
Wilson loop, N × Nmatrix

● The Chern number is invariant under gauge transformations

Wi j → Ω†i jWi jΩi j with Ωi j ∈ U(N)

Learning problem: Predict C given {Wi j ∣ (i, j) ∈ lattice}

27



The Chern number
● On a discrete lattice in 2d, it is given by

C = ∑
i, j

Im(Tr(logWi j)) ∈ Z
Wilson loop, N × Nmatrix

● The Chern number is invariant under gauge transformations

Wi j → Ω†i jWi jΩi j with Ωi j ∈ U(N)

Learning problem: Predict C given {Wi j ∣ (i, j) ∈ lattice}

27



The Chern number
● On a discrete lattice in 2d, it is given by

C = ∑
i, j

Im(Tr(logWi j)) ∈ Z
Wilson loop, N × Nmatrix

● The Chern number is invariant under gauge transformations

Wi j → Ω†i jWi jΩi j with Ωi j ∈ U(N)

Learning problem: Predict C given {Wi j ∣ (i, j) ∈ lattice}
27



Learning Determinants

● Since Tr(logX) = log(detX), try learning the determinant as a
toy problem

MLPs cannot learn determinants

28



Learning Determinants

● Since Tr(logX) = log(detX), try learning the determinant as a
toy problem

MLPs cannot learn determinants

28



Learning Determinants

● The determinant of a 4 × 4matrix is

detA =
4
∑

i, j,k,l=1
ε
i jklA1iA2 jA3kA4l

● Build a ResNet with polynomial layers

Aouti j = ∑
k1,...,k2R

θ
k1⋯k2R
i j Aink1k2⋯Aink2R−1k2R

29



Learning Determinants

● The determinant of a 4 × 4matrix is

detA =
4
∑

i, j,k,l=1
ε
i jklA1iA2 jA3kA4l

● Build a ResNet with polynomial layers

Aouti j = ∑
k1,...,k2R

θ
k1⋯k2R
i j Aink1k2⋯Aink2R−1k2R

29



Learning Determinants

Even deepmodels with layers of order R ≤ 4 cannot learn
determinants of larger matrices

2 3 4 5 6 7 8
Matrix size N

10 5

10 3

10 1

Re
la

tiv
e 

er
ro

r 

Use gauge equivariant model to learn Chern number

30



Learning Determinants

Even deepmodels with layers of order R ≤ 4 cannot learn
determinants of larger matrices

2 3 4 5 6 7 8
Matrix size N

10 5

10 3

10 1

Re
la

tiv
e 

er
ro

r 

Use gauge equivariant model to learn Chern number
30



Gauge Equivariant Network [Favoni et al. 2022]

● Gauge equivariant network for lattice QCD

● Gauge Equivariant Bilinear Layer (GEBL)

W ′i j
γ = ∑
μν

αγμνWμi jW
ν

i j
trainable parameters

channel index

● Gauge Equivariant Activation Layer (GEAct)

W ′i j
γ = σ(Re(TrWγi j))W

γ

i j

31



Gauge Equivariant Network [Favoni et al. 2022]

● Gauge equivariant network for lattice QCD
● Gauge Equivariant Bilinear Layer (GEBL)

W ′i j
γ = ∑
μν

αγμνWμi jW
ν

i j
trainable parameters

channel index

● Gauge Equivariant Activation Layer (GEAct)

W ′i j
γ = σ(Re(TrWγi j))W

γ

i j

31



Gauge Equivariant Network [Favoni et al. 2022]

● Gauge equivariant network for lattice QCD
● Gauge Equivariant Bilinear Layer (GEBL)

W ′i j
γ = ∑
μν

αγμνWμi jW
ν

i j
trainable parameters

channel index

● Gauge Equivariant Activation Layer (GEAct)

W ′i j
γ = σ(Re(TrWγi j))W

γ

i j

31



Gauge Equivariant Network [Favoni et al. 2022]

● Gauge equivariant network for lattice QCD
● Gauge Equivariant Bilinear Layer (GEBL)

W ′i j
γ = ∑
μν

αγμνWμi jW
ν

i j
trainable parameters

channel index

● Gauge Equivariant Activation Layer (GEAct)

W ′i j
γ = σ(Re(TrWγi j))W

γ

i j

31



Universal Approximation Theorem [Huang et al. 2025]

For a compact Lie group G and bounded and non-decreasing
activation function σ, GEBLNets can approximate any gauge
invariant function.

32



Training
● Train on randomly sampled Wilson loopsWi j, generate labels
from analytical expression

● Training is unstable due to bilinear layers
● Introduce gauge equivariant normalization layer (TrNorm)

W ′i j
γ = 1
∣meanγ(TrWγi j)∣

Wγi j

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

33



Training
● Train on randomly sampled Wilson loopsWi j, generate labels
from analytical expression
● Training is unstable due to bilinear layers

● Introduce gauge equivariant normalization layer (TrNorm)

W ′i j
γ = 1
∣meanγ(TrWγi j)∣

Wγi j

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

33



Training
● Train on randomly sampled Wilson loopsWi j, generate labels
from analytical expression
● Training is unstable due to bilinear layers
● Introduce gauge equivariant normalization layer (TrNorm)

W ′i j
γ = 1
∣meanγ(TrWγi j)∣

Wγi j

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

33



Training
● Train on randomly sampled Wilson loopsWi j, generate labels
from analytical expression
● Training is unstable due to bilinear layers
● Introduce gauge equivariant normalization layer (TrNorm)

W ′i j
γ = 1
∣meanγ(TrWγi j)∣

Wγi j

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum

33



Training

The TrNorm layers stabilize the training statistics

GEBL
GEAct

TrN
orm

GEBL
GEAct

TrN
orm

GEBL
GEAct

TrN
orm Trac

e
Den

se

Layers

10 1

100

101

102

103

104

105

Va
lu

e

Mean Value of TrWk , Model without TrNorm Layers
Variance of TrWk , Model without TrNorm Layers
Mean Value of TrWk , Model with TrNorm Layers
Variance of TrWk , Model with TrNorm Layers

34



Results

The normalized network can predict Chern numbers for higher
bands

Bands 4 5 6 7 8

Accuracy 95.9% 94.0% 93.8% 91.7% 52.5%

35



Learning from trivial Chern numbers

● The entire network architecture before the final sum is per-site

● Can learn local features just from topologically trivial (C = 0)
samples: No training labels necessary!

● Network generalizes to topologically non-trivial (C > 0)
samples

36



Learning from trivial Chern numbers

● The entire network architecture before the final sum is per-site

● Can learn local features just from topologically trivial (C = 0)
samples: No training labels necessary!

● Network generalizes to topologically non-trivial (C > 0)
samples

36



Learning from trivial Chern numbers

● The entire network architecture before the final sum is per-site

● Can learn local features just from topologically trivial (C = 0)
samples: No training labels necessary!

● Network generalizes to topologically non-trivial (C > 0)
samples

36



Learning from trivial Chern numbers
● Problem: Collapse to zero-solution

● Solution: Add loss Lstd to encourage non-zero std across sites

Lstd = ∣∣min(std(g(Wi j)), δ) − δ∣∣1
per-site output of final dense layer

minimum target std

0k 1k 2k 3k
Epochs

0.0

0.2

0.4

G
lo

ba
l L

os
s

0.0

0.2

0.4

St
d 

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

37



Learning from trivial Chern numbers
● Problem: Collapse to zero-solution

● Solution: Add loss Lstd to encourage non-zero std across sites

Lstd = ∣∣min(std(g(Wi j)), δ) − δ∣∣1
per-site output of final dense layer

minimum target std

0k 1k 2k 3k
Epochs

0.0

0.2

0.4

G
lo

ba
l L

os
s

0.0

0.2

0.4

St
d 

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

37



Learning from trivial Chern numbers
● Problem: Collapse to zero-solution

● Solution: Add loss Lstd to encourage non-zero std across sites

Lstd = ∣∣min(std(g(Wi j)), δ) − δ∣∣1
per-site output of final dense layer

minimum target std

0k 1k 2k 3k
Epochs

0.0

0.2

0.4

G
lo

ba
l L

os
s

0.0

0.2

0.4

St
d 

Lo
ss

Global Loss Lg

Standard Deviation Loss Lstd

37



Learning from trivial Chern numbers
Network trained on trivial topology alone can predict non-trivial
Chern numbers up to global factor

2.5 0.0 2.5
True Labels

2

0

2

O
ut

pu
ts

Rescaled Local Quantity
Std of Error:
 0.322

38



Generalization to larger grids

Since the learned features are local, network generalizes to larger
grids

0 100 200 300 400 500
Grid size for evaluation

90.0%

95.0%

100.0%
A

cc
ur

ac
y

GEBLNet Trained on 52 Grid
GEBLNet Trained on 82 Grid
GEBLNet Trained on 102 Grid

39



Key takeaways
Training dynamics of equivariant networks can be studied
using equivariant NTKs

In the infinite-width limit, MLPs trained with data
augmentation are equivalent to GCNNs

Gauge equivariant networks are required to learn Chern
numbers of topological materials

Networks trained on trivial topologies generalize to non-trivial
topologies

40



Key takeaways
Training dynamics of equivariant networks can be studied
using equivariant NTKs

In the infinite-width limit, MLPs trained with data
augmentation are equivalent to GCNNs

Gauge equivariant networks are required to learn Chern
numbers of topological materials

Networks trained on trivial topologies generalize to non-trivial
topologies

40



Key takeaways
Training dynamics of equivariant networks can be studied
using equivariant NTKs

In the infinite-width limit, MLPs trained with data
augmentation are equivalent to GCNNs

Gauge equivariant networks are required to learn Chern
numbers of topological materials

Networks trained on trivial topologies generalize to non-trivial
topologies

40



Key takeaways
Training dynamics of equivariant networks can be studied
using equivariant NTKs

In the infinite-width limit, MLPs trained with data
augmentation are equivalent to GCNNs

Gauge equivariant networks are required to learn Chern
numbers of topological materials

Networks trained on trivial topologies generalize to non-trivial
topologies

40



Papers
● Equivariant Neural Tangent Kernels

Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025

● Learning Chern Numbers of Topological Insulators with
Gauge Equivariant Neural Networks
Longde Huang, Oleksandr Balabanov, Hampus Linander, Mats Granath,
Daniel Persson, Jan E. Gerken
NeurIPS 2025

Thank you
41

https://gapindnns.github.io/members/Jan_Gerken.html

	Equivariant Neural Tangent Kernels
	Experiments
	Learning Topology with Gauge Equivariant Neural Networks

