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Equivariance
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Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
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Infinite width limit [Jacot et al. 2018]
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Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Equivariant Neural Tangent Kernels
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Rotating images
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Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling
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GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f ′) Θ

(2)
g,g′(f ,f ′) Θ

(3)
g,g′(f ,f ′) Θ

(4)
g,g′(f ,f ′) Θ

(5)
g,g′(f ,f ′) Θ(f ,f ′)
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NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[N(`)(f )](g) ([N(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E
⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[N(`)(f )](g)
∂θ(`′)

(∂[N
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦
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NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[N(`)(f )](g) = ∫Gdg κ(g
−1h) [N(`−1)(f )](h)
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NTKs of MLPs and GCNNs

● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)
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Data augmentation and NTKs

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width. Predictions of infinite ensembles agree.
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Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean

, ∀t, ∀x
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Data augmentation of CNNs

● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN
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Experiments
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Equivariant NTKs for medical image classification
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Equivariant NTKs for molecular property regression
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Convergence of augmented CNNs to GCNNs
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Learning Topology
with

Gauge Equivariant Neural Networks
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Gauge symmetry
● So far, we discussed global symmetries:

[ρreg(g)f ](x) = f (ρ(g−1)x) g ∈ G

● Now, extend to local (gauge) symmetries:

[ρgauge(g)f ](x) = f (ρ(g−1x )x) gx ∈ G

● For instance, choose basis in tangent space at each point

This symmetry is exponentially larger!

Ggauge = G∣X ∣

24
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Topological materials
● Need to choose an arbitrary basis for quantum states at each
point in momentum space

Global Symmetry
Same transformation everywhere

Gauge Symmetry
Independent transformation at each point

Each arrow pair represents a basis choice for quantum states at that point in momentum space

U(N) gauge symmetry at each point

Topology of states determines physical properties and is
independent of choice of basis
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The Chern number
● The topology is characterized by the Chern number

C = 1
2π i ∫ Tr(F(k))d2k

● Higher-dimensional analog of winding number

w = 1
2π ∮γ dθ

26



The Chern number
● On a discrete lattice in 2d, it is given by

C = ∑
i, j

Im(Tr(logWi j)) ∈ Z
Wilson loop, N × Nmatrix

● The Chern number is invariant under gauge transformations

Wi j → Ω†i jWi jΩi j with Ωi j ∈ U(N)

Learning problem: Predict C given {Wi j ∣ (i, j) ∈ lattice}
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Learning Determinants

● Since Tr(logX) = log(detX), try learning the determinant as a
toy problem

MLPs cannot learn determinants
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Learning Determinants

● The determinant of a 4 × 4matrix is

detA =
4
∑

i, j,k,l=1
ε
i jklA1iA2 jA3kA4l

● Build a ResNet with polynomial layers

Aouti j = ∑
k1,...,k2R

θ
k1⋯k2R
i j Aink1k2⋯Aink2R−1k2R
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Learning Determinants

Even deepmodels with layers of order R ≤ 4 cannot learn
determinants of larger matrices
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Use gauge equivariant model to learn Chern number
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Gauge Equivariant Network [Favoni et al. 2022]

● Gauge equivariant network for lattice QCD

● Gauge Equivariant Bilinear Layer (GEBL)

W ′i j
γ = ∑
μν

αγμνWμi jW
ν

i j
trainable parameters

channel index

● Gauge Equivariant Activation Layer (GEAct)

W ′i j
γ = σ(Re(TrWγi j))W

γ

i j
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Universal Approximation Theorem [Huang et al. 2025]

For a compact Lie group G and bounded and non-decreasing
activation function σ, GEBLNets can approximate any gauge
invariant function.

32



Training
● Train on randomly sampled Wilson loopsWi j, generate labels
from analytical expression

● Training is unstable due to bilinear layers
● Introduce gauge equivariant normalization layer (TrNorm)

W ′i j
γ = 1
∣meanγ(TrWγi j)∣

Wγi j

Nch

Nx

Ny

Input: W

Nch

GEBL GEAct TrNorm

Nch

GEBL GEAct TrNorm

Nch

Trace Dense

Sum
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Training

The TrNorm layers stabilize the training statistics
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Results

The normalized network can predict Chern numbers for higher
bands

Bands 4 5 6 7 8

Accuracy 95.9% 94.0% 93.8% 91.7% 52.5%
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Learning from trivial Chern numbers

● The entire network architecture before the final sum is per-site

● Can learn local features just from topologically trivial (C = 0)
samples: No training labels necessary!

● Network generalizes to topologically non-trivial (C > 0)
samples
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Learning from trivial Chern numbers
● Problem: Collapse to zero-solution

● Solution: Add loss Lstd to encourage non-zero std across sites

Lstd = ∣∣min(std(g(Wi j)), δ) − δ∣∣1
per-site output of final dense layer
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Learning from trivial Chern numbers
Network trained on trivial topology alone can predict non-trivial
Chern numbers up to global factor
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Generalization to larger grids

Since the learned features are local, network generalizes to larger
grids
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Key takeaways
Training dynamics of equivariant networks can be studied
using equivariant NTKs

In the infinite-width limit, MLPs trained with data
augmentation are equivalent to GCNNs

Gauge equivariant networks are required to learn Chern
numbers of topological materials

Networks trained on trivial topologies generalize to non-trivial
topologies

40
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Papers
● Equivariant Neural Tangent Kernels

Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025

● Learning Chern Numbers of Topological Insulators with
Gauge Equivariant Neural Networks
Longde Huang, Oleksandr Balabanov, Hampus Linander, Mats Granath,
Daniel Persson, Jan E. Gerken
NeurIPS 2025

Thank you
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