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Machine learning with neural networks

e Neural networks

c = Ng:R"-R", HeRN: parameters
0

e.g. Npg:picture — P(cat)

¢ Training data
examples x — y of target function, e.g.

e Optimize 0so that Ng matches the target function
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Neural networks
e Consider a very simple function

fwp :RT >R fy p(x) = o(Wx +b)

o(x) = max(0,x)

e Compose many of these
No = fiyw) po © - pe-1 ° = fy) p)

e Optimize all parameters
o={(wO, b e=1,...,L}

What can we say about Ng mathematically?
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Surprising properties of neural networks

Neural networks can approximate any function

Consider a network Ng : R — R with one hidden layer of width 4
fi(l)(x) = O'(Wi(l)X + bl.(l)), i=1,2,3,4
4
2) (1
No(x) = S WP ) + p@

i=1
For random parameters, we get

number of linear pieces
exponential in depth
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Consider a simple machine-learning problem
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Neural networks work very well!

Consider a simple machine-learning problem
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Neural networks work very well!

Neural networks show double decent
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Surprising properties of neural networks

Neural networks work very well!

Neural networks show double decent
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Surprising properties of neural networks

Only a small subnetwork matters

Possible to find tiny subnetworks which have almost the same performance as the full network

—— Conv-2 Conv-4 —— Conv-6
0.85
£ 080
[
Z
kS 0.75 A
5
I
= 0.70 4
>
z
g
? W\
8
Z
0.60

T T T T T T T T
100 514 265 137 7.1 37 1.9 10
Percent of Weights Remaining

[Frankle, Carbin 2019]



Hyperparameter tuning



Hyperparameter tuning

e We use some algorithm to optimize the parameters 0



Hyperparameter tuning

e We use some algorithm to optimize the parameters 0

e Hyperparameters are not optimized
® Parameters of the optimization algorithm
¢ Sizes of intermediate vector spaces
* How many layers, which non-linear function...



Hyperparameter tuning

e We use some algorithm to optimize the parameters 0

e Hyperparameters are not optimized
® Parameters of the optimization algorithm
¢ Sizes of intermediate vector spaces
* How many layers, which non-linear function...

* |n practice, huge amount of compute spent on trial and error
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Geometry and Physics in Neural Networks

Geometric Deep Learning\

e Can we exploit the geometry of the data distribution?

e Can we exploit symmetries of the target function?

e Can we use methods from theoretical physics to understand
the learning process?
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Manifold Hypothesis

high data
density

low data
density

10



Adversarial Examples

classifier f

11



Adversarial Examples

classifier f

11



Adversarial Examples

classifier f

11



Adversarial Examples

classifier f

11



Geometry of the Data Manifold

12



Geometry of the Data Manifold

Use model to learn diffeomorphism to normal distribution
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Geometry of the Data Manifold

Use model to learn diffeomorphism to normal distribution

generative

en
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Follow the gradient in the normalized coordinates
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Optimize along the Data Manifold

Follow the gradient in the normalized coordinates

generative classifier f
model g

—g(2h
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Symmetry of the Data

network

rotate

network — N(p,n(g)x) pout(g)N(X)

rotatlon |mage
rotate
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Symmetry of the Data = Equivariant Networks

‘ - ‘

network| network| <~ N(pin(g)X) = pout(g)N(X)

rotation j k image
rotate
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Group Equivariant Convolutional Networks
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What is the general mathematical formulation
of equivariant neural networks?
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Abstract

We survey the mathematical foundations of geometric deep learning. focusing on group
equivariant and gauge equivariant neural networks. We develop gauge equivariant convo-
lutional neural networks on arbitrary manifolds M using principal bundles with structure




Equivariant Neural Networks

What is the general mathematical formulation
of equivariant neural networks?

Geometric deep learning and equivariant neural networks /7 Fiber bundles
Jan E. Gerken'23( . Jimmy Aronsson’ - Oscar Carlsson' ) - Hampus Linander® -
Fredrik Ohlsson®( - Christoffer Petersson'S . Daniel Persson’

Accepted: 1 May 2023 / Published online: 4 June 2023 > Re p I’ese ntatl O n theO ry

©The Author(s) 2023

Abstract h H l h H
We survey the mathematical foundations of geometric deep learning, focusing on group \ Sp erica armon ICS)
equivariant and gauge equivariant neural networks. We develop gauge equivariant convo-

lutional neural networks on arbitrary manifolds M using principal bundles with structure ngner matrices...
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Use gauge equivariant network to learn topological invariants
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5 No specialized architecture necessary

p No exact equivariance

Can we understand data augmentation theoretically?
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Empirical NTK

Training dynamics under continuous gradient descent:

learning rate [ loss
dNg(x) _
dt Z Oolx, X')(‘?CN(X,)

training sample
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Empirical NTK

Training dynamics under continuous gradient descent:

learning rate [ loss
dN@(X) Z o (X X oL
dt O ON(x;)

training sample
with the empirical neural tangent kernel (NTK)
ON(x) ON(x")

Og(x,x") =
2. 98, 8,
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Infinite width limit
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Infinite Width limit [Jacot et al. 2018]

o‘,"” I‘

b NTK becomes independent of initialization
& NTKbecomes constantin training
@5 NTK can be computed for most networks

v Training dynamics can be solved
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Mean prediction from NTK

® Atinfinite width, the mean prediction is given by

He(x) = O(x,X)O(X, X)L (1 - e 1OXX)tyy

[Jacot et al. 2018]
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Mean prediction from NTK acot et al. 2015]

® Atinfinite width, the mean prediction is given by

neural tangent kernel train labels

He(x) = O, X)O(X, X)L (1 - e 1OXX)tyy

learning rate j

train data
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Data augmentation at infinite width

ue(x) = 06, X)8(X, X) 2 (1 - e 1OUNyy

augmented data
augmented labels
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Data augmentation at infinite width

group transformation
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for invariance
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Data augmentation at infinite width

( group transformation

ke (p(g)x) = ©(x, X)O(X,X) (1 - e 10Xty p(g)y

= pt(X)

~—
. :Y-
for invariance
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Mean prediction

e (x)
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Mean prediction

pe(x) = [E60~initializations [Net ()]
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Mean prediction

init,

1
e (x) :[E60~initializations[Net(x)] = lim — Z Net(X)

n—-oo n
90 inity



Mean prediction

pe(x) = [E60~initializations [Net (x)] =

init,

- lim 1 >, Ng(x)

n—-oo n
90 inity

mean prediction ofdeep ensemble
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Equivariant Ensembles

Ensembles of networks become
exactly equivariant under data augmentation

Emergent Equivariance in Deep Ensembles

Jan E. Gerken "' Pan Kessel ">

s equivar
icular, the
nt

nt: while the prediction of the ensembl
embers are not. In p:

Abstrz

deep ensembles become equivariant
nd at all training times by simply

ant, the predictions of its
ensemble members are not required to have an equivar

We show th:
for all inputs

chitecture.

orously derive this surprising emergent equivariance
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Equivariant Ensembles

Ensembles of networks become
exactly equivariant under data augmentation

Emergent Equivariance in Deep Ensembles

Jan E. Gerken "' Pan Kessel ">

Abstract

while the pr

Also true for finite-width ensembles: [Nordenfors, Flinth 2024]
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Equivariant NTKs

Extend NTK framework to equivariant models

Equivariant Neural Tangent Kernels

Philipp Misof Pan Kessel ? Jan E. Gerken *

Abstract

Little is known about the training dynamics of equivariant neural networks, in particular how it
compares to data augmented training of their non-equivariant counterparts. Recently, neural tangent
kernels (NTKs) have emerged as a pmer:ul tool to anal yuca]ly study the training dynam|c< of wide

nenral netwnrke T thic wark we fale an imnortant eten toumrde o thenrstical inderctanding nf

Could show that an ensemble of augmented MLPs corresponds to an ensemble of GCNNs.
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Non-Gaussian Corrections from Physics

@ Gaussians are limiting
b Taylor-expand in 1/width

b Use techniques from quantum field theory
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Non-Gaussian Corrections from Physics

@ Gaussians are limiting
b Taylor-expand in 1/width

b Use techniques from quantum field theory

Neural Networks Quantum Field Theory

infinite width no interactions
Gaussian distribution free fields
finite-width interactions
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Feynman diagrams for Neural Networks

®
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Finite-Width Neural Tangent Kernels
from Feynman Diagrams

Max Guillen** Philipp Misof ** Jan E. Gerken®

Abstract

Neural tangent kernels (NTKS) are a powerful tool for analyzing deep, non-linear neural networks.
In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding
full analytic control over the training dynamics. However, at infinite width, important properties of
training such as NTK evolution or feature learning are absent. Nevertheless, finite widih effects can be
included by computing corrections o the Gaussian statstics at infinite width. We introduce Feynman
diagrams for computing finite-width corrections to NTK sta These dramatically simplify the
necessary algebraic manipulations and enable the computation of layer-wise recursive relations for
arhireary sratictics invalving nesactivatinne NTK s and cortain hioher.dsrivative tencare (ANTIC and
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Finite-width corrections
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Finite-width corrections

0.17 =
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M
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Finite-width corrections
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Outlook

¢ Understanding training dynamics of neural networks remains
challenging
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Outlook

¢ Understanding training dynamics of neural networks remains
challenging

= Use symmetric case as simplified approach to study training
¢ How does data augmentation affect the training dynamics?

e How do the training dynamics of equivariant models differ
from those of non-equivariant models?

¢ Useinsights from physics to make progress
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