

Structure and Dynamics of Deep Neural Networks

A Perspective from Geometry and Physics

Docent Lecture

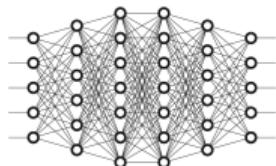
Jan E. Gerken

UNIVERSITY OF
GOTHENBURG

WASPI WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Machine learning with neural networks

- Neural networks

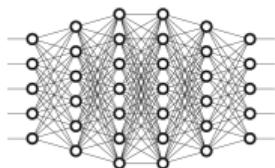


$$\Rightarrow \mathcal{N}_\theta: \mathbb{R}^m \rightarrow \mathbb{R}^n, \quad \theta \in \mathbb{R}^N: \text{parameters}$$

e.g. \mathcal{N}_θ : picture $\mapsto P(\text{cat})$

Machine learning with neural networks

- Neural networks



$$\Rightarrow \mathcal{N}_\theta: \mathbb{R}^m \rightarrow \mathbb{R}^n, \quad \theta \in \mathbb{R}^N: \text{parameters}$$

e.g. \mathcal{N}_θ : picture $\mapsto P(\text{cat})$

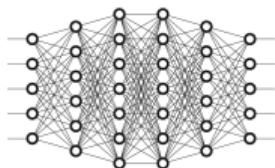
- Training data

examples $x \mapsto y$ of target function, e.g.

$$\mathcal{D} = \left\{ \begin{array}{ccc} \text{Grumpy Cat image} & \mapsto & 1.0, \\ \text{Dog wearing sunglasses image} & \mapsto & 0.0, \quad \dots \end{array} \right\}$$

Machine learning with neural networks

- Neural networks



$$\Rightarrow \mathcal{N}_\theta: \mathbb{R}^m \rightarrow \mathbb{R}^n, \quad \theta \in \mathbb{R}^N: \text{parameters}$$

e.g. \mathcal{N}_θ : picture $\mapsto P(\text{cat})$

- Training data

examples $x \mapsto y$ of target function, e.g.

$$\mathcal{D} = \left\{ \begin{array}{ccc} \text{Grumpy Cat image} & \mapsto & 1.0, \\ \text{Dog wearing sunglasses image} & \mapsto & 0.0, \quad \dots \end{array} \right\}$$

- Optimize θ so that \mathcal{N}_θ matches the target function

Neural networks

Neural networks

- Consider a very simple function

$$f_{W,b} : \mathbb{R}^m \rightarrow \mathbb{R}^n \quad f_{W,b}(x) = Wx + b$$

Neural networks

- Consider a very simple function

$$f_{W,b} : \mathbb{R}^m \rightarrow \mathbb{R}^n \quad f_{W,b}(x) = Wx + b$$

- Compose many of these

$$\mathcal{N}_\theta = f_{W^{(L)}, b^{(L)}} \circ f_{W^{(L-1)}, b^{(L-1)}} \circ \cdots \circ f_{W^{(1)}, b^{(1)}}$$

Neural networks

- Consider a very simple function

$$f_{W,b} : \mathbb{R}^m \rightarrow \mathbb{R}^n \quad f_{W,b}(x) = \sigma(Wx + b)$$

$$\sigma(x) = \max(0, x)$$

- Compose many of these

$$\mathcal{N}_\theta = f_{W^{(L)}, b^{(L)}} \circ f_{W^{(L-1)}, b^{(L-1)}} \circ \cdots \circ f_{W^{(1)}, b^{(1)}}$$

Neural networks

- Consider a very simple function

$$f_{W,b} : \mathbb{R}^m \rightarrow \mathbb{R}^n \quad f_{W,b}(x) = \sigma(Wx + b)$$

$$\sigma(x) = \max(0, x)$$

- Compose many of these

$$\mathcal{N}_\theta = f_{W^{(L)}, b^{(L)}} \circ f_{W^{(L-1)}, b^{(L-1)}} \circ \cdots \circ f_{W^{(1)}, b^{(1)}}$$

- Optimize all parameters

$$\theta = \{(W^{(\ell)}, b^{(\ell)}) \mid \ell = 1, \dots, L\}$$

Neural networks

- Consider a very simple function

$$f_{W,b} : \mathbb{R}^m \rightarrow \mathbb{R}^n \quad f_{W,b}(x) = \sigma(Wx + b)$$

$$\sigma(x) = \max(0, x)$$

- Compose many of these

$$\mathcal{N}_\theta = f_{W^{(L)}, b^{(L)}} \circ f_{W^{(L-1)}, b^{(L-1)}} \circ \cdots \circ f_{W^{(1)}, b^{(1)}}$$

- Optimize all parameters

$$\theta = \{(W^{(\ell)}, b^{(\ell)}) \mid \ell = 1, \dots, L\}$$

What can we say about \mathcal{N}_θ mathematically?

Surprising properties of neural networks

Neural networks can approximate any function

Surprising properties of neural networks

Neural networks can approximate any function

Consider a network $\mathcal{N}_\theta : \mathbb{R} \rightarrow \mathbb{R}$ with one hidden layer of width 4

$$f_i^{(1)}(x) = \sigma\left(W_i^{(1)}x + b_i^{(1)}\right), \quad i = 1, 2, 3, 4$$

$$\mathcal{N}_\theta(x) = \sum_{i=1}^4 W_i^{(2)} f_i^{(1)}(x) + b^{(2)}$$

Surprising properties of neural networks

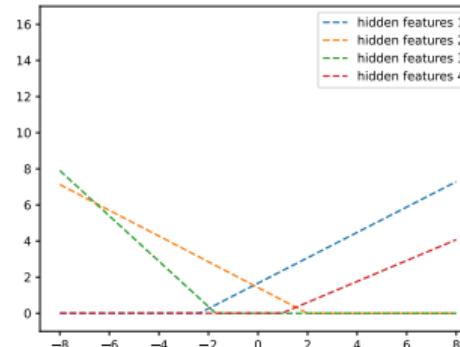
Neural networks can approximate any function

Consider a network $\mathcal{N}_\theta : \mathbb{R} \rightarrow \mathbb{R}$ with one hidden layer of width 4

$$f_i^{(1)}(x) = \sigma\left(W_i^{(1)}x + b_i^{(1)}\right), \quad i = 1, 2, 3, 4$$

$$\mathcal{N}_\theta(x) = \sum_{i=1}^4 W_i^{(2)} f_i^{(1)}(x) + b^{(2)}$$

For random parameters, we get



Surprising properties of neural networks

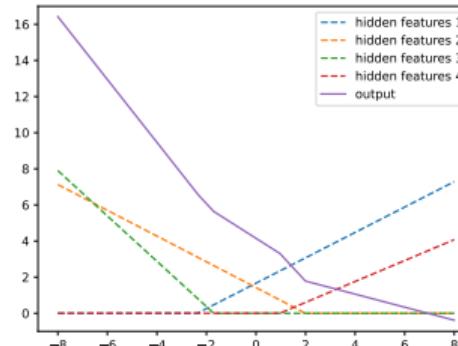
Neural networks can approximate any function

Consider a network $\mathcal{N}_\theta : \mathbb{R} \rightarrow \mathbb{R}$ with one hidden layer of width 4

$$f_i^{(1)}(x) = \sigma(W_i^{(1)}x + b_i^{(1)}), \quad i = 1, 2, 3, 4$$

$$\mathcal{N}_\theta(x) = \sum_{i=1}^4 W_i^{(2)} f_i^{(1)}(x) + b^{(2)}$$

For random parameters, we get



Surprising properties of neural networks

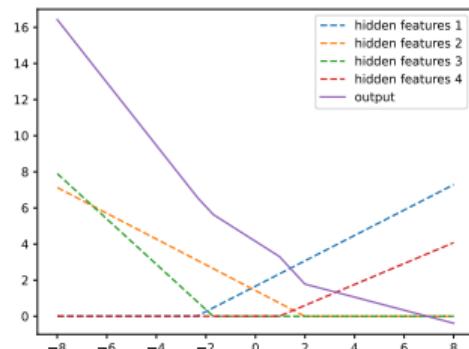
Neural networks can approximate any function

Consider a network $\mathcal{N}_\theta : \mathbb{R} \rightarrow \mathbb{R}$ with one hidden layer of width 4

$$f_i^{(1)}(x) = \sigma\left(W_i^{(1)}x + b_i^{(1)}\right), \quad i = 1, 2, 3, 4$$

$$\mathcal{N}_\theta(x) = \sum_{i=1}^4 W_i^{(2)} f_i^{(1)}(x) + b^{(2)}$$

For random parameters, we get



→ number of linear pieces
exponential in depth

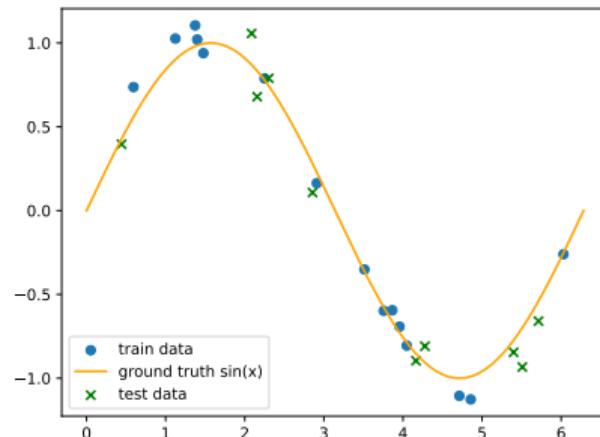
Surprising properties of neural networks

Neural networks work very well!

Surprising properties of neural networks

Neural networks work very well!

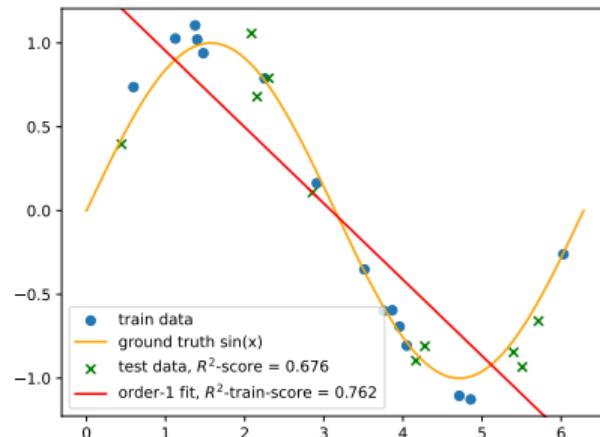
Consider a simple machine-learning problem



Surprising properties of neural networks

Neural networks work very well!

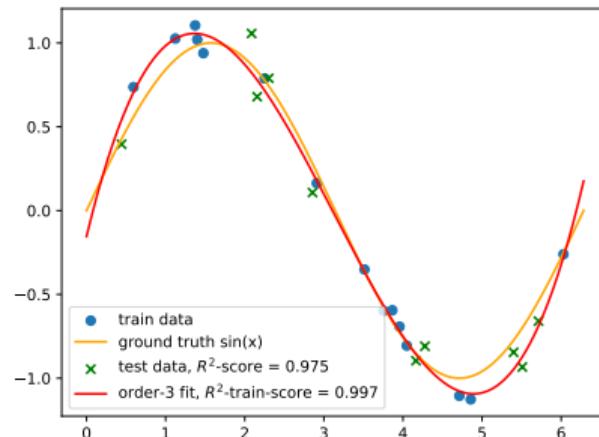
Consider a simple machine-learning problem



Surprising properties of neural networks

Neural networks work very well!

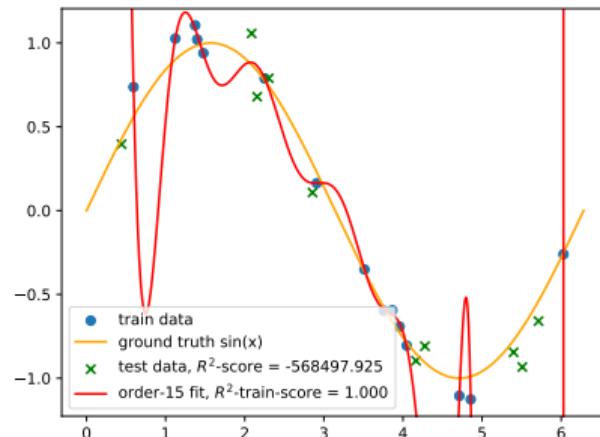
Consider a simple machine-learning problem



Surprising properties of neural networks

Neural networks work very well!

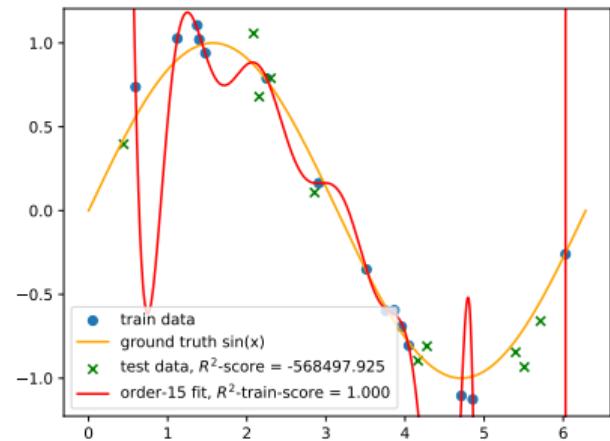
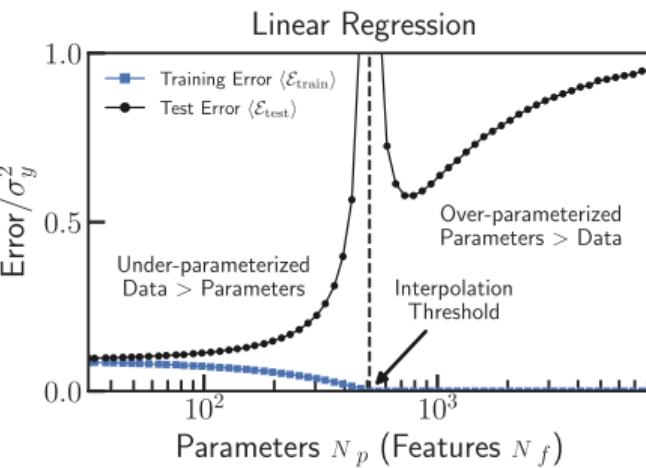
Consider a simple machine-learning problem



Surprising properties of neural networks

Neural networks work very well!

Consider a simple machine-learning problem

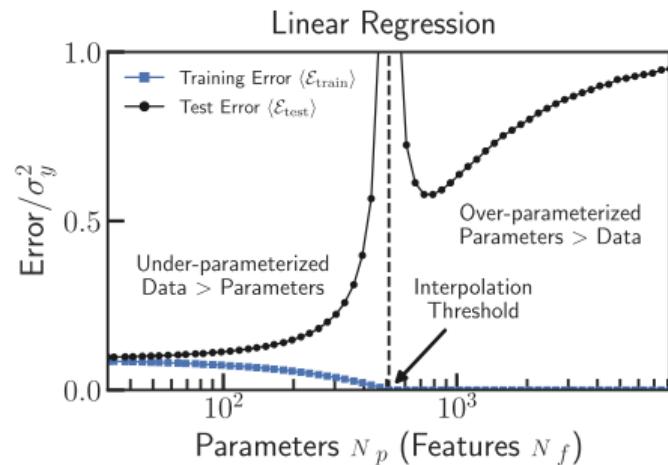


[Rocks, Mehta 2020]

Surprising properties of neural networks

Neural networks work very well!

Neural networks show double decent

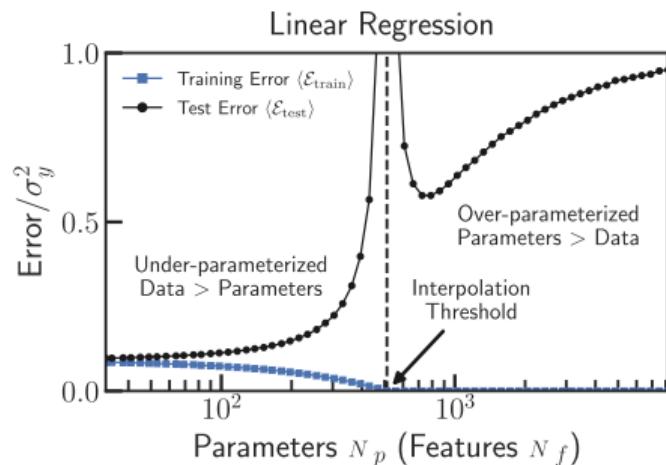
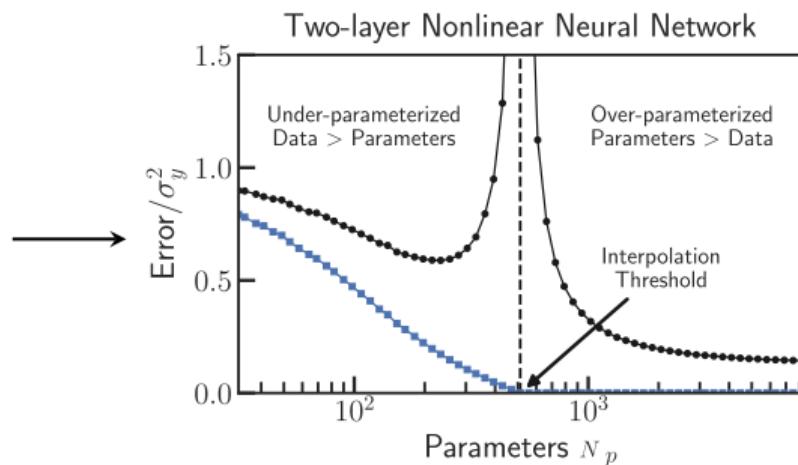


[Rocks, Mehta 2020]

Surprising properties of neural networks

Neural networks work very well!

Neural networks show double decent



[Rocks, Mehta 2020]

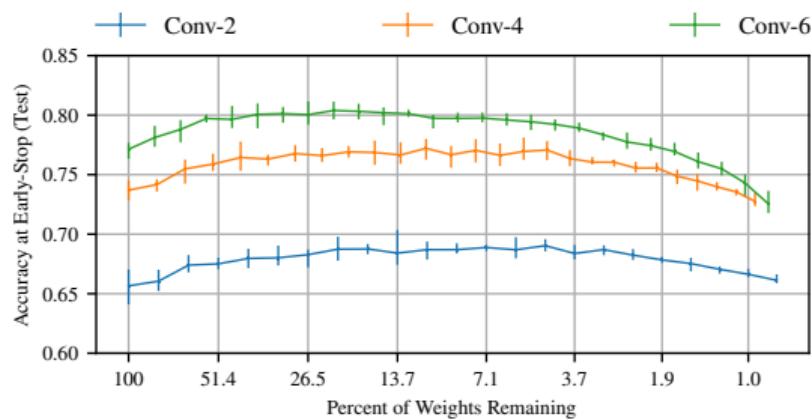
Surprising properties of neural networks

Only a small subnetwork matters

Surprising properties of neural networks

Only a small subnetwork matters

Possible to find tiny subnetworks which have almost the same performance as the full network



[Frankle, Carbin 2019]

Hyperparameter tuning

Hyperparameter tuning

- We use some algorithm to optimize the parameters θ

Hyperparameter tuning

- We use some algorithm to optimize the parameters θ
- **Hyperparameters** are not optimized
 - Parameters of the optimization algorithm
 - Sizes of intermediate vector spaces
 - How many layers, which non-linear function...

Hyperparameter tuning

- We use some algorithm to optimize the parameters θ
- **Hyperparameters** are not optimized
 - Parameters of the optimization algorithm
 - Sizes of intermediate vector spaces
 - How many layers, which non-linear function...
- In practice, huge amount of compute spent on trial and error

Geometry and Physics in Neural Networks

Geometry and Physics in Neural Networks

- Can we exploit the geometry of the data distribution?
- Can we exploit symmetries of the target function?
- Can we use methods from theoretical physics to understand the learning process?

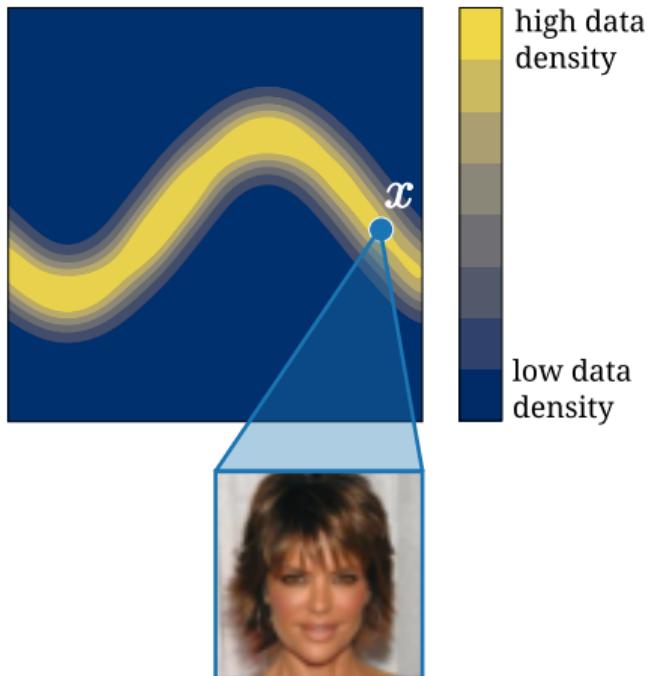
Geometry and Physics in Neural Networks

Geometric Deep Learning

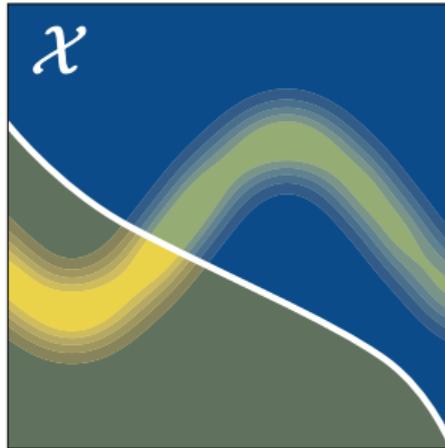
- Can we exploit the geometry of the data distribution?
- Can we exploit symmetries of the target function?
- Can we use methods from theoretical physics to understand the learning process?

Geometry of the Data Distribution

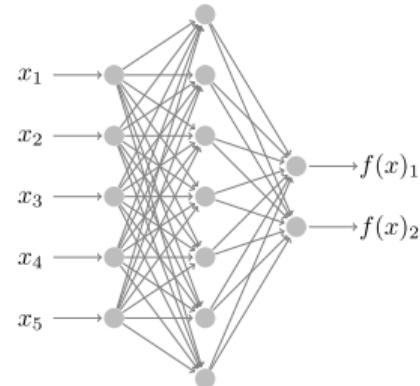
Manifold Hypothesis



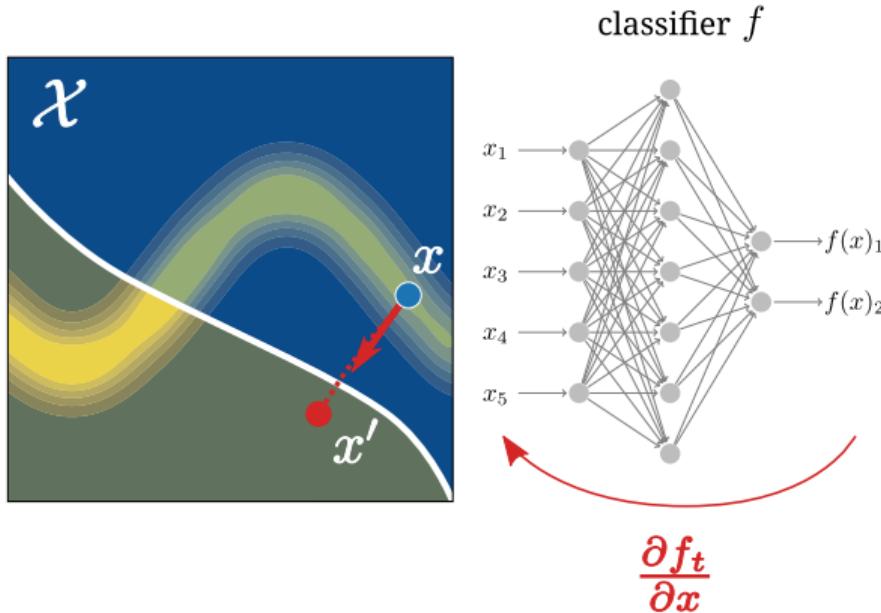
Adversarial Examples



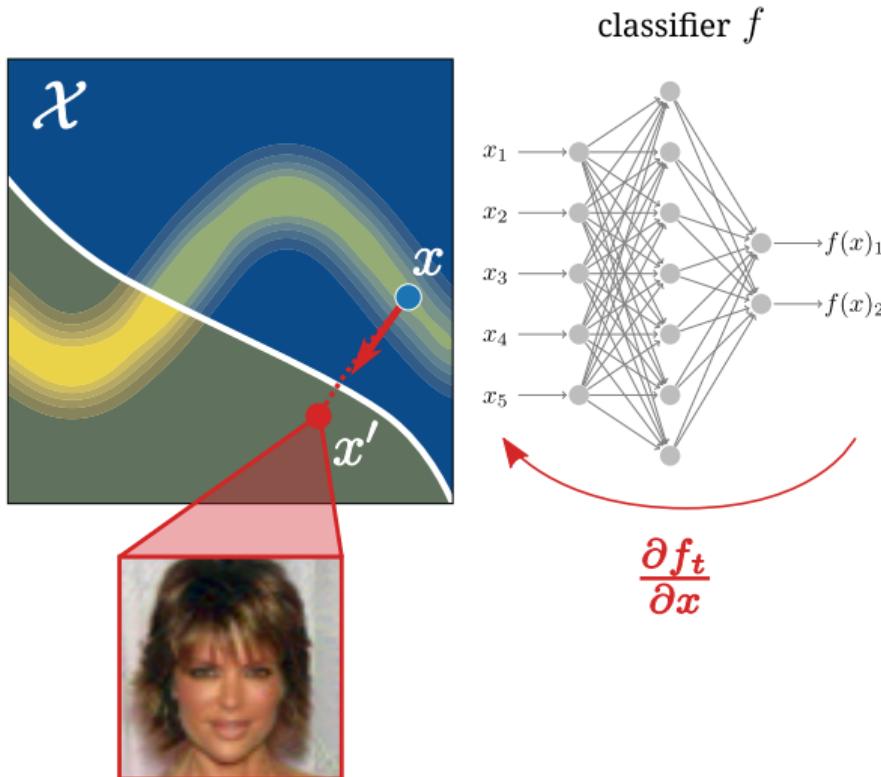
classifier f



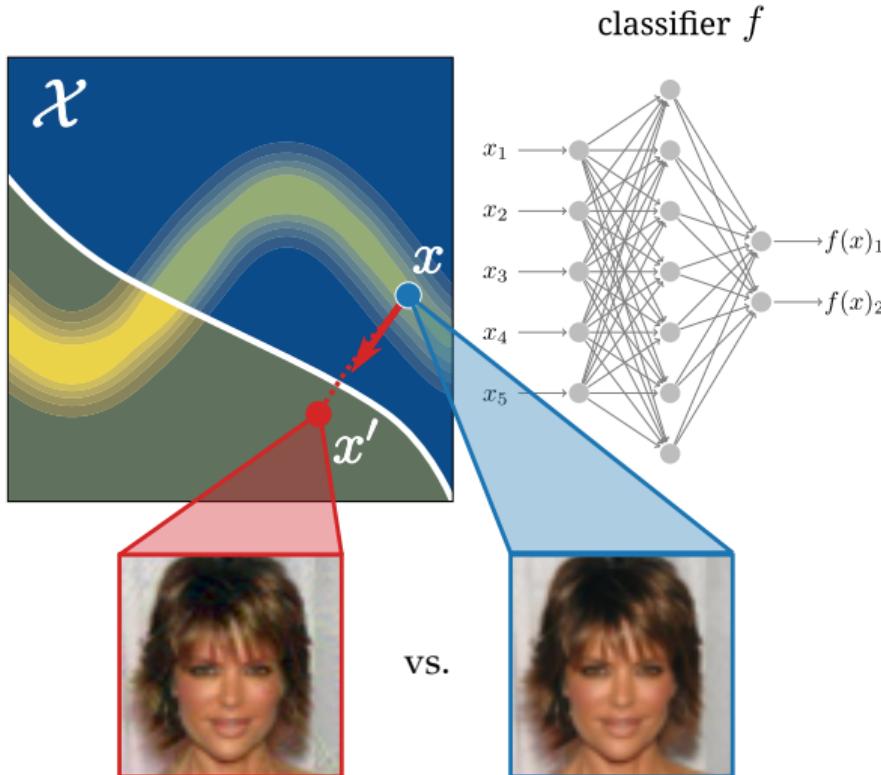
Adversarial Examples



Adversarial Examples



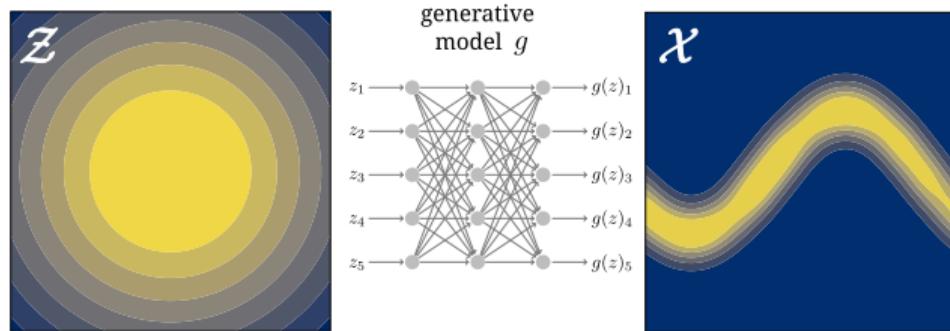
Adversarial Examples



Geometry of the Data Manifold

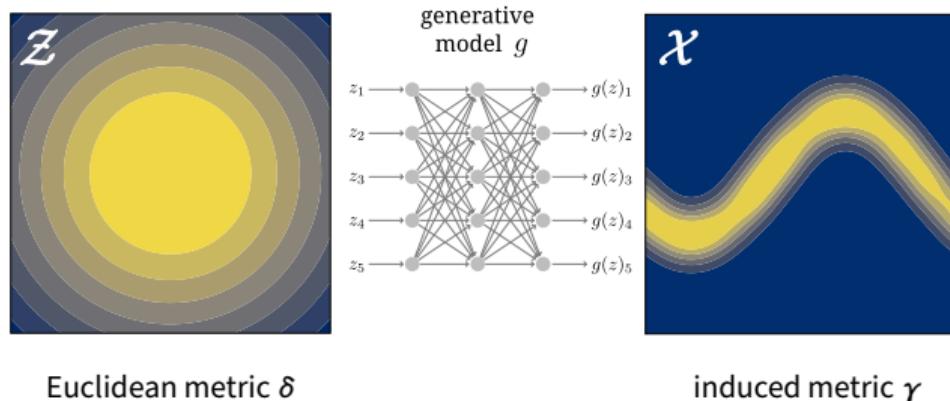
Geometry of the Data Manifold

Use model to learn diffeomorphism to normal distribution



Geometry of the Data Manifold

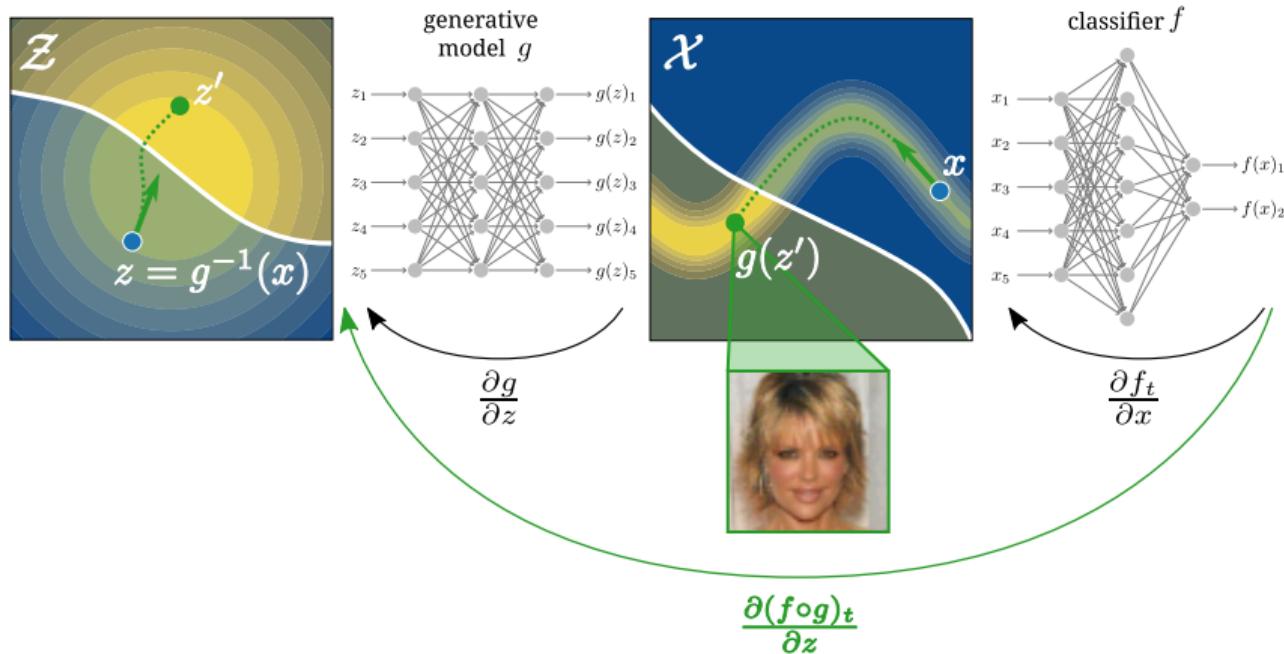
Use model to learn diffeomorphism to normal distribution



Optimize along the Data Manifold

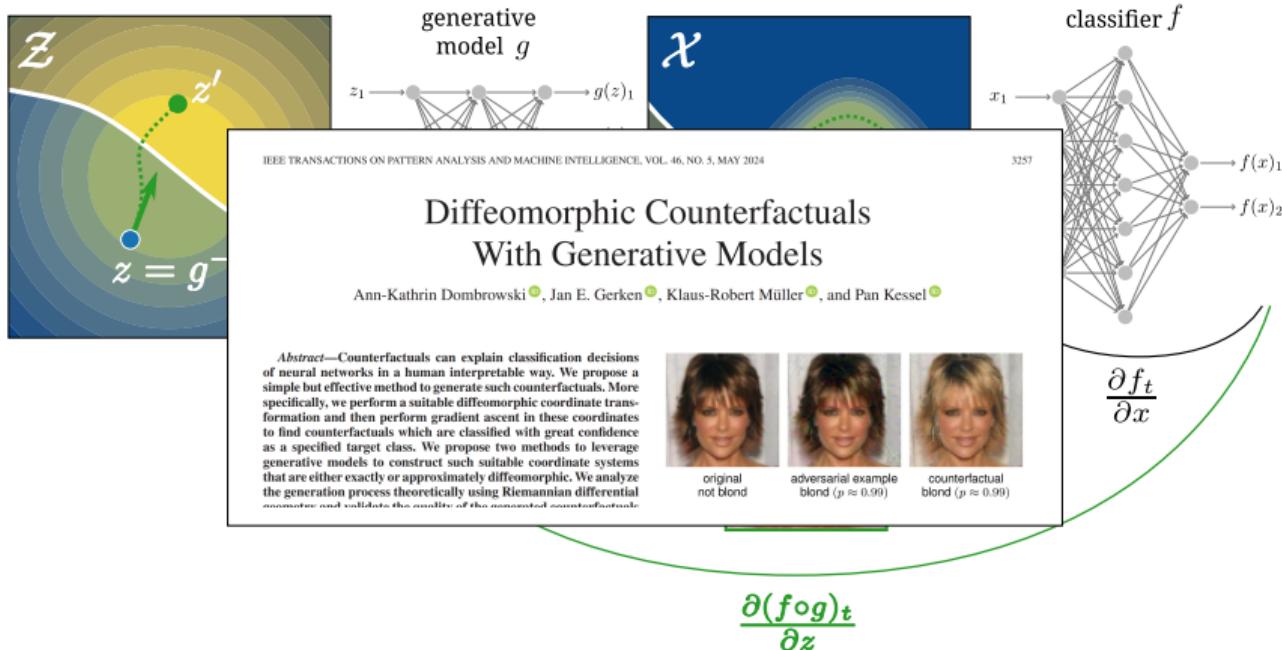
Optimize along the Data Manifold

Follow the gradient in the normalized coordinates



Optimize along the Data Manifold

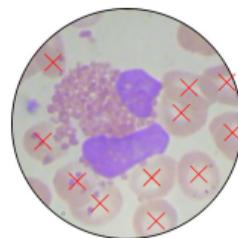
Follow the gradient in the normalized coordinates



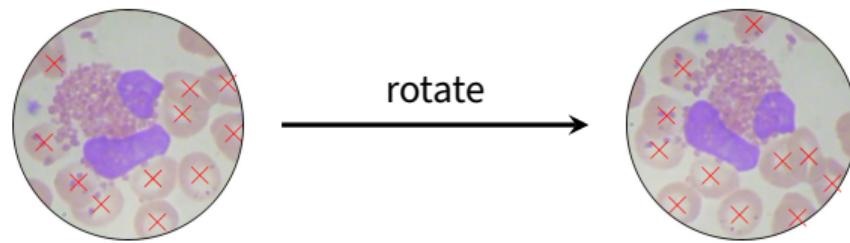
Symmetries

Symmetry of the Data

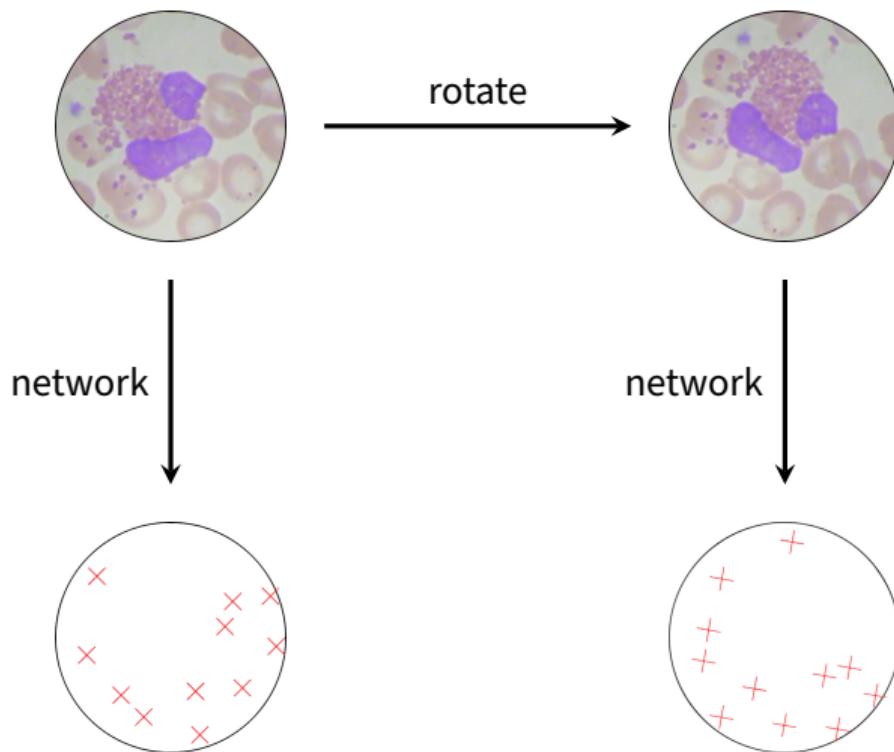
Symmetry of the Data



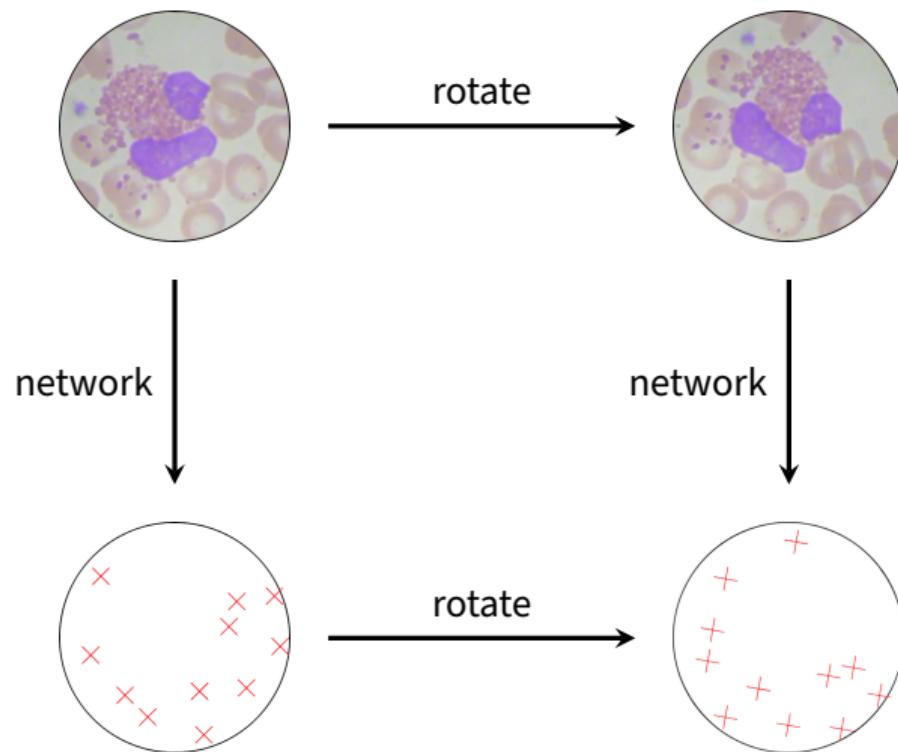
Symmetry of the Data



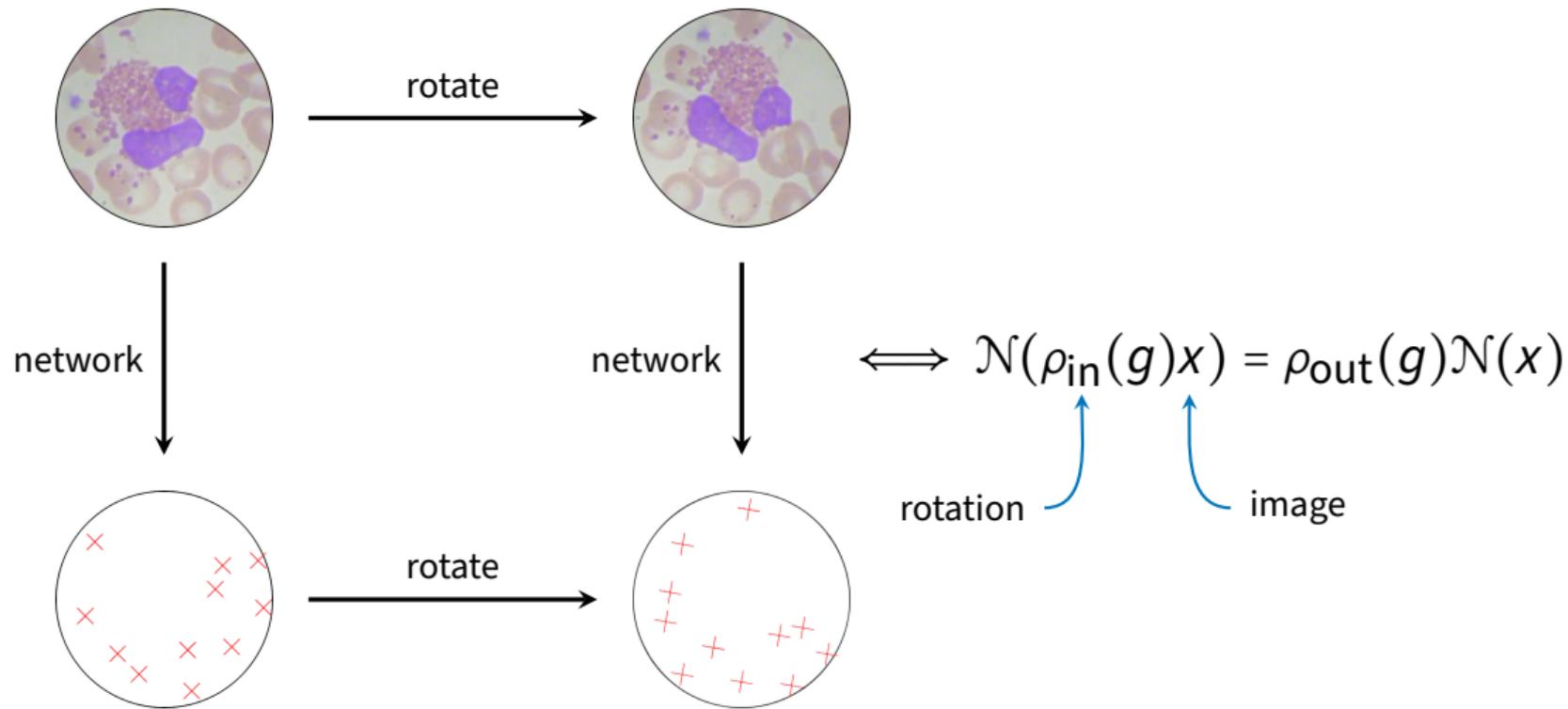
Symmetry of the Data



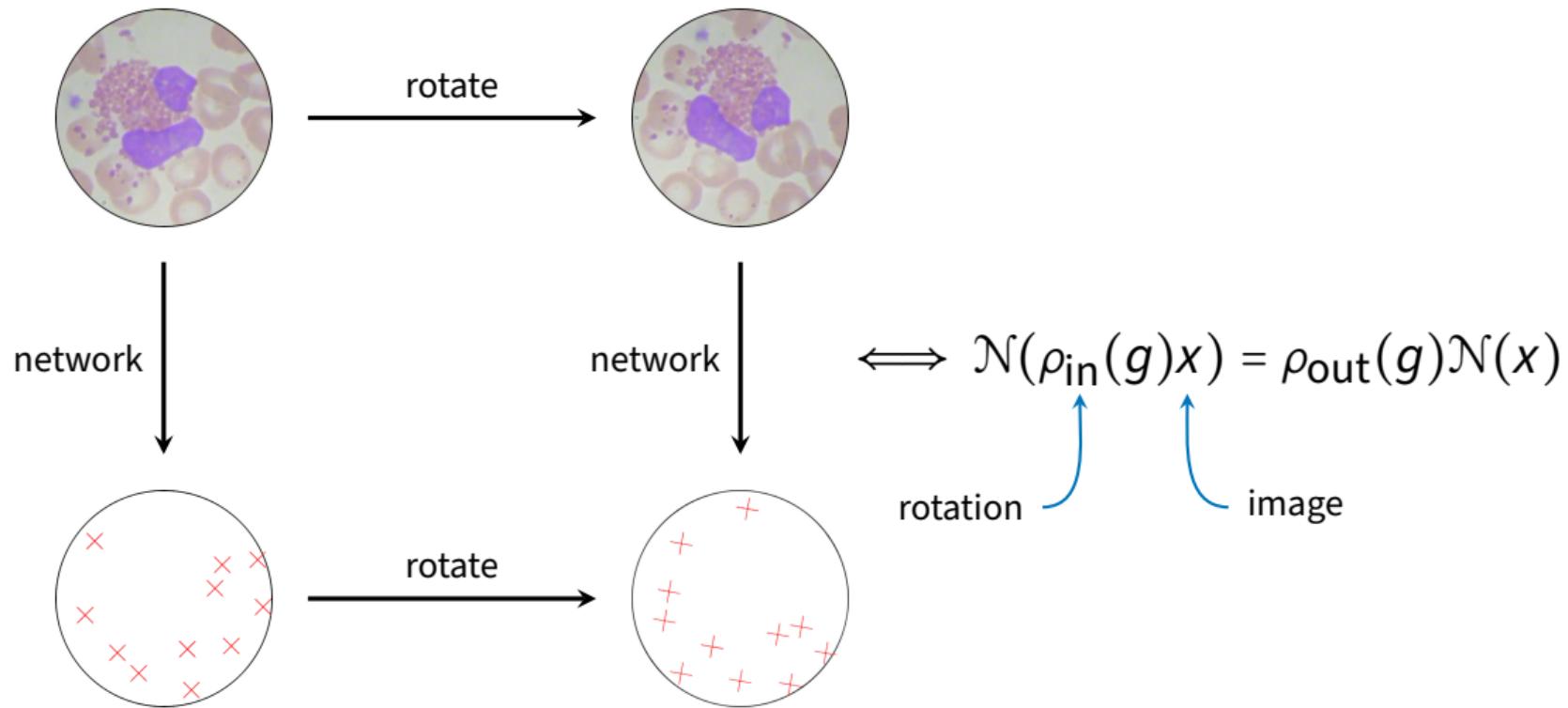
Symmetry of the Data



Symmetry of the Data



Symmetry of the Data \Rightarrow Equivariant Networks



Equivariant neural networks

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a *deep* network because all the layers in such a network are *translation equivariant*: shifting the image and then feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable function-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs incorporate functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Dilemmas et al., 2016; Marcus et al., 2017; Worrn et al., 2017; Tancik et al., 2017; Alabd, 2017; Cohen et al., 2018) has explored new CNN architectures that are *invariant* to various (nearly-to) *invariant* transformations.

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrn et al., 2017; Zou et al., 2017; Zou et al., 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode modifiable invariance constraints

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,³ Martin Lachica,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois of Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of California San Diego, San Diego, California 92093, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA
⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we extend these ideas to the quantum regime by

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrn et al., 2017; Mallya et al., 2017; Mallya, 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode inductive biases in particular coordinate

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,⁴ Martin Loeffler,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA

⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we extend these ideas to the quantum regime by

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^d Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences,
Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia,
Duning Street, Beijing 100089, China

^cCERN, EP Department,
CH-1211 Geneva 23, Switzerland

^dSchool of Physics, Peking University,
Chenfu Road, Beijing 100871, China

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of symmetry-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrall et al., 2017; Mallya et al., 2017; Cohen et al., 2018) has explored new CNN architectures that are

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,⁴ Martin Læsøe,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of California San Diego, San Diego, California 92093, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA
⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we present theory for the quantum analog to

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^c Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia, Daxing Street, Beijing 100098, China

^cCERN, EP Department, CH-1211 Geneva 23, Switzerland

^dSchool of Physics, Peking University, Chencula Road, Beijing 100871, China

E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

Simon Batzner^{a,1} Albert Musoelian,¹ Lixin Sun,¹ Mario Geiger,² Jonathan P. Maillet,³ Mordechai Kornblith,² Nicola Molinari,¹ Tess E. Smith,^{4,5} and Boris Kozinsky^{a,1,3}

¹John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

²École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

³Robert Bosch Research and Technology Center, Cambridge, MA 02120, USA

⁴Computational Research Division and Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94730, USA

⁵Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA 02139, USA

This work presents Neural Equivariant Interatomic Potentials (NeqIP), an E(3)-equivariant neural network approach for learning interatomic potentials from *ab initio* calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NeqIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *rotation-equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^c Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia, Daming Street, Beijing 100089, China

^cCERN, EP Department, CH-1211 Geneva 23, Switzerland

^dSchool of Physics, Peking University, Chenfu Road, Beijing 100871, China

E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

Simon Batzner^{a,1} Albert Musaelian¹ Lixin Sun¹ Mario Geiger² Jonathan P. Mailon³ Mordechai Kornblith² Nicola Molinari¹ Tess E. Smith^{4,5} and Boris Kozinsky^{a,1,3}

¹John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

²École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

³Robert Bosch Research and Technology Center, Cambridge, MA 02120, USA

⁴Computational Research Division, and Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94730, USA

⁵Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA 02139, USA

This work presents Neural Equivariant Interatomic Potentials (NeqIP), an E(3)-equivariant neural network approach for learning interatomic potentials from *ab-initio* calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NeqIP¹ employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformations. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Dilemmas et al., 2016; Marcus et al., 2017; Worrall et al., 2017; Mallya et al., 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode invariance to particular transformations.

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen^{1,2} Louis Schatzki^{3,4} Paolo Branca^{1,5} Michael Raymer^{1,6} Patrick J. Coles¹ Frédéric Sauvage⁴ Martin Laecca^{1,7} and M. Covarrubias²

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA

⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we present theory for the quantum analogues

HIERARCHICAL, ROTATION-EQUIVARIANT NEURAL NETWORKS TO SELECT STRUCTURAL MODELS OF PROTEIN COMPLEXES

Stephan Eismann^{a*}

Department of Applied Physics
Stanford University
seismann@stanford.edu

Raphael J.L. Townsend^{b*}

Department of Computer Science
Stanford University
raphael01cs.stanford.edu

Nathaniel Thomas^c

Department of Physics
Stanford University
nthomas103@gmail.com

Milind Jagota

Department of Electrical Engineering
Stanford University
mjagota@stanford.edu

Bowen Jing

Department of Computer Science
Stanford University
bjing@cs.stanford.edu

Ron O. Dror

Department of Computer Science
Stanford University
rondror@cs.stanford.edu

ABSTRACT

Predicting the structure of multi-protein complexes is a grand challenge in biochemistry, with major implications for basic science and drug discovery. Computational structure prediction methods generally leverage pre-defined structural features to distinguish accurate structural models from less accurate ones. This raises the question of whether it is possible to learn characteristics of accurate models directly from atomic coordinates of protein complexes, with no prior assumptions. Here we introduce a machine learning method that learns directly from the 3D positions of all atoms to

Equivariant Neural Networks

What is the general mathematical formulation
of equivariant neural networks?

 Check for updates

Geometric deep learning and equivariant neural networks

Jan E. Gerken^{1,2,3} · Jimmy Aronsson¹ · Oscar Carlsson¹ · Hampus Linander⁴
Fredrik Ohlsson⁵ · Christoffer Petersson^{1,6} · Daniel Persson¹

Accepted: 1 May 2023 / Published online: 4 June 2023
© The Author(s) 2023

Abstract
We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks. We develop gauge equivariant convolutional neural networks on arbitrary manifolds \mathcal{M} using principal bundles with structure

Equivariant Neural Networks

What is the general mathematical formulation
of equivariant neural networks?

Geometric deep learning and equivariant neural networks

Check for updates

Jan E. Gerken^{1,2,3} · Jimmy Aronsson¹ · Oscar Carlsson¹ · Hampus Linander⁴ ·
Fredrik Ohlsson⁵ · Christoffer Petersson^{1,6} · Daniel Persson¹

Accepted: 1 May 2023 / Published online: 4 June 2023
© The Author(s) 2023

Abstract
We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks. We develop gauge equivariant convolutional neural networks on arbitrary manifolds \mathcal{M} using principal bundles with structure

- Fiber bundles
- Representation theory
- Spherical harmonics,
Wigner matrices...

Equivariant Neural Networks

Use gauge equivariant network to learn topological invariants

Learning Chern Numbers of Multiband Topological Insulators with Gauge Equivariant Neural Networks

Longde Huang

Department of Mathematical Sciences
Chalmers University of Technology
University of Gothenburg
longde@chalmers.se

Oleksandr Balabanyov

Department of Physics
Stockholm University

Hampus Linander

VERSES AI
Los Angeles, CA, USA
hampus.linander@verses.ai

Mats Granath

Department of Physics
University of Gothenburg
mats.granath@physics.gu.se

Daniel Persson

Department of Mathematical Sciences
Chalmers University of Technology
University of Gothenburg
daniel.persson@chalmers.se

Jan E. Gerken

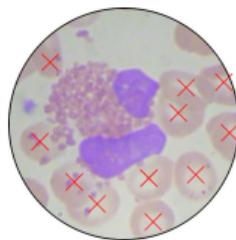
Department of Mathematical Sciences
Chalmers University of Technology
University of Gothenburg
gerken@chalmers.se

Abstract

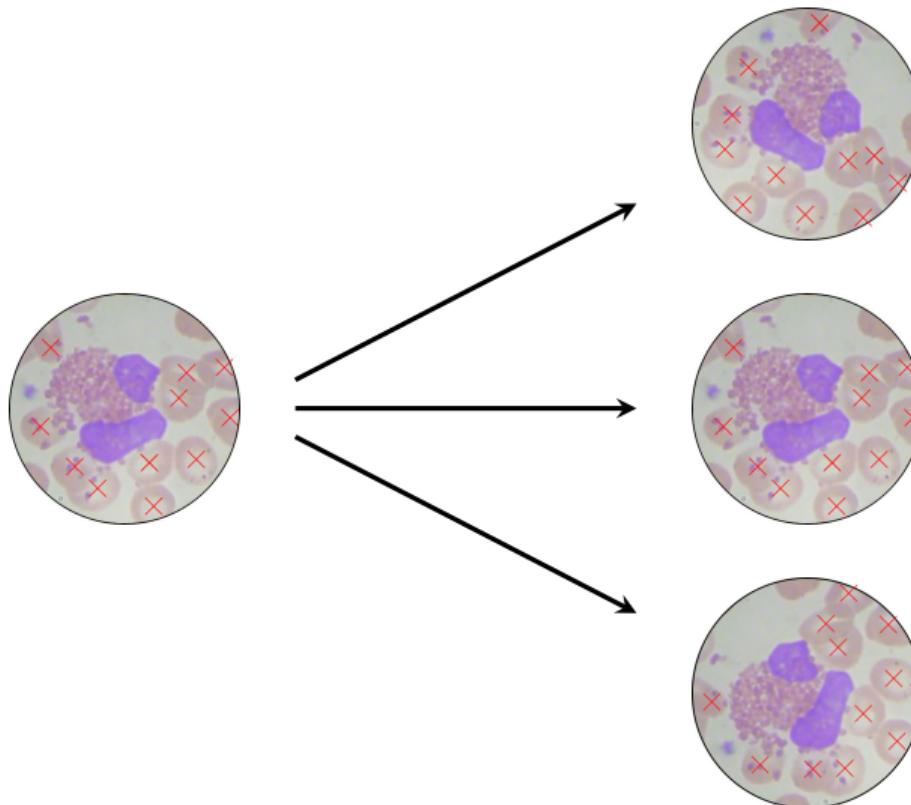
Equivariant network architectures are a well-established tool for predicting invariant or equivariant quantities. However, almost all learning problems considered in this context feature a global symmetry, i.e. each point of the underlying space is transformed with the same group element, as opposed to a local *gauge* symmetry, where each point is transformed with a different group element, exponentially enlarging the size of the symmetry group. We use gauge equivariant networks to

Learning symmetries

Learning symmetries



Learning symmetries



Impose symmetries or learn them?

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43242-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

Josh Abramson^{1,2}, Jonas Adler³, Jack Danger^{1,4}, Richard Evans⁵, Tim Green², Alexander Pritzel², Olaf Ronneberger⁶, Lindsay Wilkerson⁷, Andrew J. Ballard⁸, Michael O’Neill⁹, Sebastian W. Voss¹⁰, David A. Baker¹¹, Michael Chikudate¹², Michael O’Neill¹³, David Riedel¹⁴, Kathryn Sawyer¹⁵, Zorba Rizkalla¹⁶, Svetlana Sengulay¹⁷, Ester Avantaggiato¹⁸, Charles Bostick¹⁹, Ottavia Bortolisi²⁰, Alex Brigandt²¹, Alenay Chempur²², Miles Congreve²³, Alexander L. Cowen-Rivers²⁴, Andrew Cowie²⁵, Michael Figari²⁶, Michael Gromiha²⁷, Michael Gromiha²⁸, Michael Gromiha²⁹, Yannick J. Khuu³⁰, Catherine M. R. Lew³¹, Koko Mera³², Anil Panchal³³, Pavan Ray³⁴, Sulabh Ray³⁵, Adrien Reina³⁶, Anikó Tóth-Lakatos-Baranyi³⁷, Catherine Tong³⁸, Sergei Vakser³⁹, Ellen S. Zhang⁴⁰, Michal Zelma⁴¹, Augustin Žíšek⁴², Victor Kapur⁴³, Pudhvezd Koch⁴⁴, Max Jaderberg⁴⁵, Dennis Hesselbarth⁴⁶ & John M. Jumper^{47,48}

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1–4}. Here we describe the AlphaFold 3 model with a substantially updated architecture that can predict the structure of a protein in complex with a range of complex including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s4324-024-07487-w>

Received: 19 December 2022

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

 Check for updates

Josh Abramson^{1,2}, Alexander Pritzel^{1,2}, Richard Evans^{1,2}, Tim Green^{1,2}, Tony Willmetts^{1,2}, Andrew J. Ballard^{1,2}, Michael O'Neil^{1,2}, David A. Baker^{1,2,3,4}, Chaitanya Bhandarkar^{1,2}, Michael O'Neil^{1,2}, Zohreh Ebrahimi^{1,2}, Sambasiva Rengaraju¹, David Bartels^{1,2}, Alex Bridgland¹, Alenay Chempuranc¹, Miles Cullen^{1,2}, Daniel Green-River¹, Andrew Cowie¹, Michael Figaroff¹, Michael Gao^{1,2}, Paul G. Hynes¹, Daniel Young¹, Kyoko Yamada¹, Catherine M. H. Lew¹, Catherine Tong¹, Sergei Vakser¹, Ellen S. Zhang¹, Martin Ziske¹, Victor Kapur¹, Puthrenet Kochi¹, Max Jaderberg^{1,2}, & John M. Ampe^{1,2}

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1,2}. Here we describe the AlphaFold 3 model with a substantially updated set of biomolecular interactions, including predictions of the structure of complex oligomers of proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

No Equivariance¹

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1088/1361-6528/024/024083>

卷之三十一

Received: 19 December 2001

Accepted: 29 April 2024

Digitized by srujanika@gmail.com

Open access

Introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a large range of applications in protein modelling and design^{1–4}. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model nucleic acids, small molecules, ions and modified residues.

structure prediction of
protein-ligand interactions. *J. Mol. Biol.* 2008; 378: 1022-1034.

© 2008 The Authors
Journal compilation © 2008
John Wiley & Sons, Ltd.

No Equivariance!

John M. Jumper^{1,2,3}

卷八

manifold 2 has spurious

eractions, enabling

Here we describe a

Architecture bits

www.sagepub.com/journals/ajph

DIAZOS, DIAZOS, DIAZOS

Gold model demo

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions: AlphaFold 3

<https://doi.org/10.1038/s4324-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1–3}. Here we describe the AlphaFold 3 model with a substantially updated architecture that achieves state-of-the-art performance on a wide range of complex systems including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Richard Evans^{1,2}, Tim Green^{1,2}, Alexander Prizel^{1,2}, Tony Willmott^{1,2}, Andrew J. Bellard^{1,2}, Michael O’Hearn^{1,2}, David A. K. Hart^{1,2}, Chaitanya Rangwala^{1,2}, Michael O’Hearn^{1,2}, David A. K. Hart^{1,2}, Chaitanya Rangwala^{1,2}, Zohreh Ebrahimi^{1,2}, Sambasiva Rengaraju^{1,2}, Svetlana Bartsch^{1,2}, Alex Bridgland¹, Alenay Chempur¹, Ester Arguello¹, Miles Miles¹, Fabio Sartori¹, Daniel Young¹, K. K. K. Chaitanya¹, Catherine H. R. Lew¹, Mark A. Poulton¹, Sulabh Singh¹, Adam Stuebs¹, Catherine Tong¹, Sergei Vakser¹, Ellen S. Zhang¹, Martin Zídek¹, Victor Kapur¹, Pudhvezh Kath¹, Max Jaderberg^{1,2}, & John M. Jumper^{1,2}

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model’s performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jaitly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the chemical structure of molecules (e.g., minimum bond angles) we are able to radically simplify structure generation and predict the number of other

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Despite the molecular complexity, when chemical constraints are imposed (specific constraints, such as bond types and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unusable for even moderately small molecules. Systematic methods, like DMTFGA (Hawkins et al., 2018)

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43240-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein folding and design^{1,2}. Here we describe the AlphaFold 3 model with a substantially updated architecture that achieves state-of-the-art performance in the prediction of complex interactions, including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Michael O’Hearn^{1,2}, David A. K. Wilson^{1,2}, Chaitanya R. Ravi^{1,2}, Zohreh Amini^{1,2}, Sambasiva Rengaraju¹, David Bartok^{1,2}, Alex Bridgland¹, Alenay Chempak¹, Steven Rivera¹, Andrew Cowie¹, Michael Fippl¹, Miles Fidder¹, Michael Goriely¹, Daniel Hirsch¹, Daniel K. Hwang¹, Pooyan Kavvayi¹, Subhadeep Khatua¹, Aditi Krishnapriyan¹, Catherine Tong¹, Sergei Vakser¹, Ellen S. Zhang¹, Austin Ziskin¹, Victor Kapur¹, Pudhvezh Kashi¹, Max Jaderberg^{1,2}, & John M. Jumper^{1,2}

Probing the effects of broken symmetries in machine learning

Marco F. Langer¹, Sergey N. Prodnikov² and Michele Ceriotti¹

Laboratory of Computational Science and Modelling and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

¹ Author to whom any correspondence should be addressed.

E-mail: michele.ceriotti@epfl.ch

Keywords: machine learning, symmetry-constrained models, atomistic modeling, molecular simulations

Supplementary material for this article is available [online](#)

Abstract

Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to be exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries—rotations in particular—constraints the model design space and implies more complicated architectures that are often also computationally demanding. There are indications

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics

Marioes Arts,^{1,2,3,4} Victor García Satorras,^{1,5,6} Chin-Wei Huang,¹ Daniel Zügner,⁵ Marco Federici,^{1,3} Cecilia Clementi,^{5,2} Frank Noé,¹ Robert Pinsler,⁶ and Rianne van den Berg¹

¹ Work done during an internship at Microsoft Research (Amsterdam).

² University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen, 2100, Denmark.

³ AI4Science, Microsoft Research, Evert van de Beekstraat 354, Amsterdam, 1118 CZ, The Netherlands.

⁴ AI4Science, Microsoft Research, Karl-Liebknecht-Straße 32, Berlin, 10178, Germany.

⁵ University of Amsterdam, Information Institute, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

⁶ Freie Universität Berlin, Department of Physics, Arnimallee 12, Berlin, 14195, Germany.

^{1,2} AI4Science, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, United Kingdom.

³ Equal contribution.

E-mail: ma@di.ku.dk; victorgar@microsoft.com

Abstract

Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jaitly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the chemical structure of molecules (e.g., minimum bond angles) we are able to radically simplify structure generation and predict conformers on the

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Despite the molecular complexity, the conformer generation process is not limited by specific constraints, such as bond types and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unfeasible for even moderately small molecules. Systematic methods, like DMFGA (Hawkins et al., 2018),

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43998-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1,2}. Here we describe the AlphaFold 3 model with a substantially updated architecture that is able to predict the structure of complex proteins and complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Michael O’Hearn^{1,2}, David A. K. Hart^{1,2}, Chaitanya R. Ravuri^{1,2}, Zachary D. Slepnev^{1,2}, Sumantra Sengupta^{1,2}, David Bartok^{1,2}, Alex Bridgland¹, Alenay Chempuru¹, Steven Rivero¹, Andrew Cowie¹, Michael Fippl¹, Catherine Young¹, Khrystyna Kholodenko¹, Catherine H. Lew¹, Catherine Tong¹, Sergei Vakser¹, Ellen S. Zhang¹, Austin Ziskin¹, Victor Kapur¹, Pudhvezh Kachi¹, Max Jaderberg^{1,2}, & John M. Jumper^{1,2}

Probing the effects of broken symmetries in machine learning

Marco F. Langer¹, Sergey N. Prodnikov² and Michele Ceriotti¹

Laboratory of Computational Science and Modelling and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

¹ Author to whom any correspondence should be addressed.

E-mail: michele.ceriotti@epfl.ch

Keywords: machine learning, symmetry-constrained models, atomistic modeling, molecular simulations

Supplementary material for this article is available [online](#)

Abstract

Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries—rotations in particular—constraints the model design space and implies more complicated architectures that are often also computationally demanding. There are indications

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model’s performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics

Marioes Arts,^{1,1,2} Victor García Satorras,^{1,3} Chin-Wei Huang,¹ Daniel Zügner,¹ Marco Federici,^{1,3} Cecilia Clementi,^{1,2} Frank Noé,¹ Robert Pinsler,¹ and Rianne van den Berg¹

¹ Work done during an internship at Microsoft Research (Amsterdam).
² University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen, 2100, Denmark.

³ AI4Science, Microsoft Research, Evert van de Beekstraat 354, Amsterdam, 1118 CZ, The Netherlands.

¹ AI4Science, Microsoft Research, Karl-Liebknecht-Straße 32, Berlin, 10178, Germany.
² University of Amsterdam, Information Institute, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

¹ Freie Universität Berlin, Department of Physics, Arnimallee 12, Berlin, 14195, Germany.
² AI4Science, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, United Kingdom.

¹ Equal contribution.

E-mail: ma@di.ku.dk; victorgar@microsoft.com

Abstract

Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jaitly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the chemical structure of molecules (or, in other words, without any symmetry), we are able to radically simplify structure generation and make it tractable for molecules that

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Despite the molecular complexity, such as bond type and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unfeasible for even moderately small molecules.

Systematic methods, like DMFGA (Hawkins et al., 2018),

DOES EQUIVARIANCE MATTER AT SCALE?

Johann Bremer¹, Sönke Behrends¹, Pim de Haan², Taco Cohen¹
Quacquarelli AI Research¹
mail@johannbremer.de

ABSTRACT

Given large data sets and sufficient compute, is it beneficial to design neural architectures for the structure and symmetries of each problem? Or is it more efficient to learn them from data? We study empirically how equivariant and non-equivariant networks scale with compute and training samples. Focusing on a benchmark problem of rigid-body interactions and on general-purpose transformer architectures, we perform a series of experiments, varying the model size, training steps, and dataset size. We find that non-equivariant models with data augmentation are more efficient, but training non-equivariant models with data augmentation can close this gap given sufficient epochs. Second, scaling with compute follows a power law, with equivariant models outperforming non-equivariant ones at each tested compute budget. Finally, the optimal allocation of a compute budget onto model size and training duration differs between equivariant and non-equivariant models.

Impose symmetries or learn them?

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43998-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling protein structures and their interactions, enabling a huge range of applications in medicine and design^{1,2}. Here we describe the AlphaFold 3 model with a updated architecture that achieves state-of-the-art performance in prediction of complex systems including proteins, nucleic acids, small molecules, ions and residues. The new AlphaFold model demonstrates substantially improved

Probing the effects of broken symmetries in machine learning

Marco F. Langer¹, Sergey N. Prochnikov² and Michele Ceriotti³

Laboratory of Computational Science and Modelling and National Centre for Computational Design and Discovery of Novel Materials, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

¹ Author to whom any correspondence should be addressed.

E-mail: michele.ceriotti@epfl.ch

Keywords: machine learning, symmetry-constrained models, atomistic modeling, molecular simulations

Supplementary material for this article is available [online](#)

Abstract

Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries—rotations in particular—constraints the model design space and implies more complicated architectures that are often also computationally demanding. There are indications

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

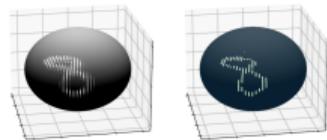
Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Equivariance versus Augmentation for Spherical Images

Jan E. Gerken^{1,2,3} Oscar Carlsson¹ Hampus Linander⁴ Fredrik Ohlsson⁵ Christoffer Peterson^{6,1}
Daniel Persson¹

Abstract

We analyze the role of rotational equivariance in convolutional neural networks (CNNs) applied to spherical images. We compare the performance of the group equivariant networks known as S2CNNs and standard non-equivariant CNNs trained with an increasing amount of data augmentation. The chosen architectures can be consid-



Netterlands.
§AI4Science, Microsoft Research, Karl-Liebknecht-Straße 32, Berlin, 10178, Germany.
¶University of Amsterdam, Informatics Institute, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

„Freie Universität Berlin, Department of Physics, Arnimallee 12, Berlin, 14195, Germany.
#AI4Science, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, United Kingdom.
②Equal contribution.

* E-mail: ma@di.ku.dk; victorgar@microsoft.com

Abstract

Course-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹ Ahmed A. Elbag^{1,2} Navdeep Jaitly¹ Joshua M. Susskind¹ Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that is amenable to parallelization. Many of the heuristics of prior works overstate the art results by using the scale of the problem. By training a diffusion generative model directly on 3D atomic positions makes assumptions about the likelihood of molecules in memory and we are able to significantly simplify the problem.

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Designing the molecular conformers, such as bond types and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unfeasible for even moderately small molecules. Systematic methods, like DMFGA (Hawkins et al., 2018),

DOES EQUIVARIANCE MATTER AT SCALE?

Johann Bremer¹ Sönke Behrends¹ Pim de Haan² Taco Cohen¹
Qualcomm AI Research¹
mail@johannbremer.de

ABSTRACT

Given large data sets and sufficient compute, is it beneficial to design neural architectures for the structure and symmetries of each problem? Or is it more efficient to learn them from data? We study empirically how equivariant and non-equivariant networks scale with compute and training samples. Focusing on a benchmark problem of rigid-body interactions and a general-purpose transformer architectures, we perform a series of experiments, varying the model size, training steps, and dataset size. We find that non-equivariant models with data augmentation are more efficient, but training non-equivariant models with data augmentation can close this gap given sufficient epochs. Second, scaling with compute follows a power law, with equivariant models outperforming non-equivariant ones at each tested compute budget. Finally, the optimal allocation of a compute budget onto model size and training duration differs between equivariant and non-equivariant models.

Practitioners like data augmentation

- thumb up Easy to implement
- thumb up No specialized architecture necessary

Practitioners like data augmentation

- 👍 Easy to implement
- 👍 No specialized architecture necessary
- 👎 No exact equivariance

Practitioners like data augmentation

- 👍 Easy to implement
- 👍 No specialized architecture necessary
- 👎 No exact equivariance

Can we understand data augmentation theoretically?

Infinite-Width Networks

Empirical NTK

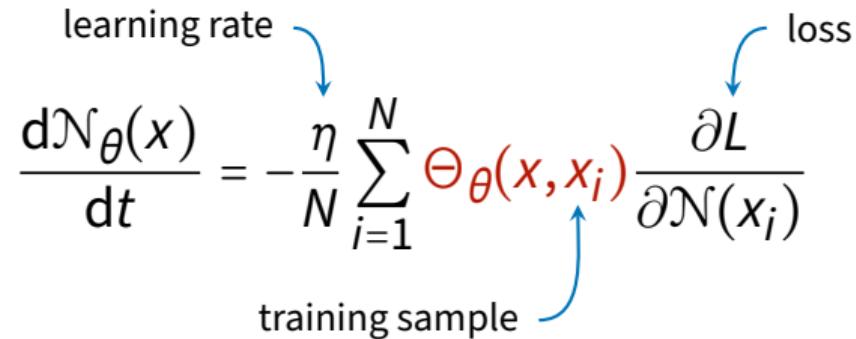
Training dynamics under continuous gradient descent:

$$\frac{d\mathcal{N}_\theta(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^N \Theta_\theta(x, x_i) \frac{\partial L}{\partial \mathcal{N}(x_i)}$$

learning rate

loss

training sample



Empirical NTK

Training dynamics under continuous gradient descent:

$$\frac{d\mathcal{N}_\theta(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^N \Theta_\theta(x, x_i) \frac{\partial L}{\partial \mathcal{N}(x_i)}$$

learning rate

loss

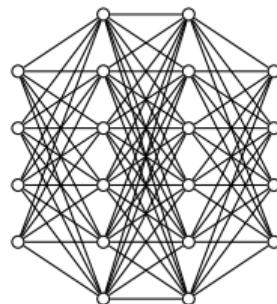
training sample

with the **empirical neural tangent kernel (NTK)**

$$\Theta_\theta(x, x') = \sum_\mu \frac{\partial \mathcal{N}(x)}{\partial \theta_\mu} \frac{\partial \mathcal{N}(x')}{\partial \theta_\mu}$$

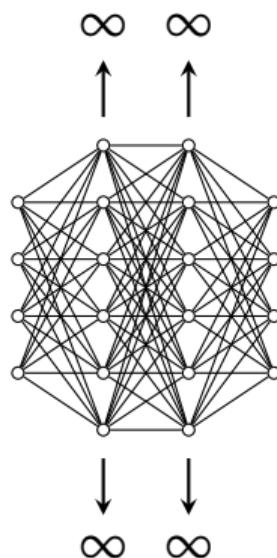
Infinite width limit

[Jacot et al. 2018]



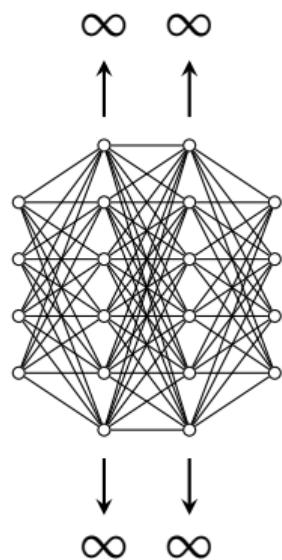
Infinite width limit

[Jacot et al. 2018]



Infinite width limit

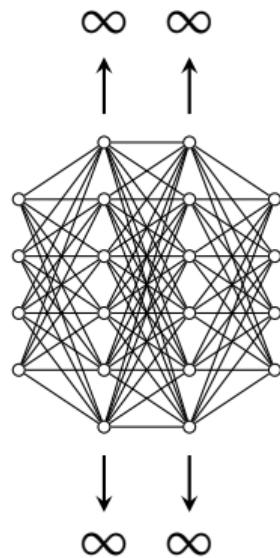
[Jacot et al. 2018]



👍 NTK becomes independent of initialization

Infinite width limit

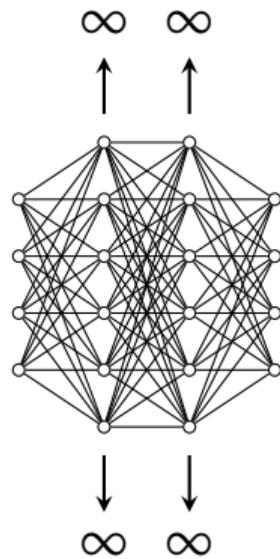
[Jacot et al. 2018]



- 👍 NTK becomes independent of initialization
- 👍 NTK becomes constant in training

Infinite width limit

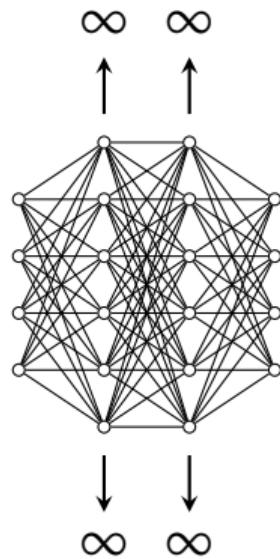
[Jacot et al. 2018]



- NTK becomes independent of initialization
- NTK becomes constant in training
- NTK can be computed for most networks

Infinite width limit

[Jacot et al. 2018]



- 👍 NTK becomes independent of initialization
- 👍 NTK becomes constant in training
- 👍 NTK can be computed for most networks
- ✓ Training dynamics can be solved

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

train data

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

learning rate

train data

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

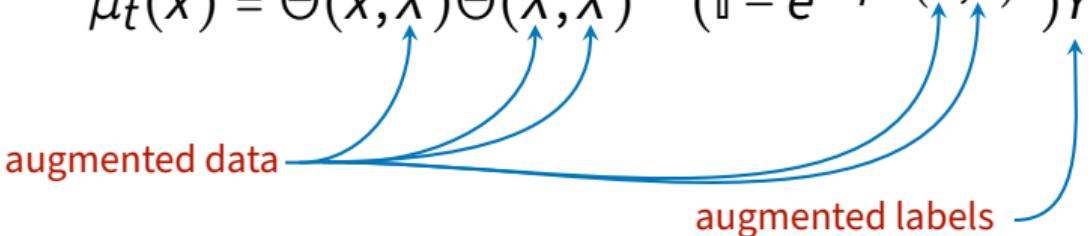
Diagram illustrating the components of the mean prediction formula:

- neural tangent kernel**: Points to the term $\Theta(x, X)$.
- train labels**: Points to the term Y .
- learning rate**: Points to the term $e^{-\eta \Theta(X, X)t}$.
- train data**: Points to the term $\Theta(X, X)^{-1}$.

Data augmentation at infinite width

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

Data augmentation at infinite width

$$\mu_t(x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$


augmented data

augmented labels

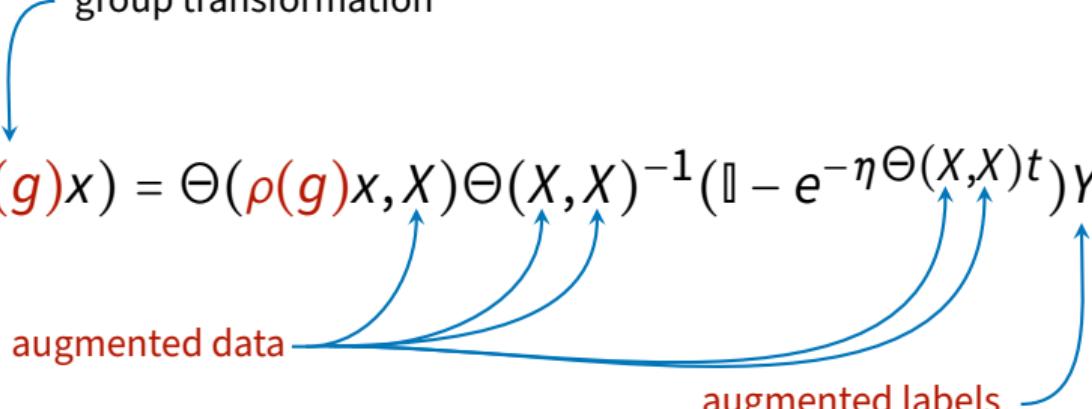
Data augmentation at infinite width

group transformation

$$\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

augmented data

augmented labels



Data augmentation at infinite width

$$\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

group transformation

for augmented data

augmented data

augmented labels

The diagram illustrates the process of data augmentation. It features a large blue oval enclosing the mathematical expression $\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$. Above the oval, the text "group transformation" is positioned above the first term $\Theta(\rho(g)x, X)$, and "for augmented data" is positioned above the final term Y . Below the oval, the text "augmented data" is placed to the left of the input $\rho(g)x$, and "augmented labels" is placed to the right of the output Y . Blue arrows point from "augmented data" to the input $\rho(g)x$ and from "augmented labels" to the output Y .

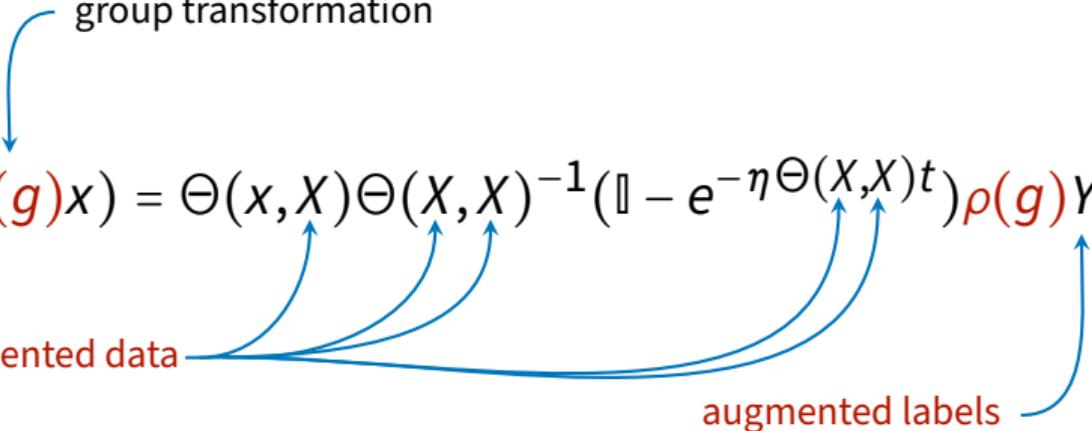
Data augmentation at infinite width

group transformation

$$\mu_t(\rho(g)x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\rho(g)Y$$

augmented data

augmented labels



Data augmentation at infinite width

$$\mu_t(\rho(g)x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\underbrace{\rho(g)Y}_{=Y \text{ for invariance}}$$

group transformation

augmented labels

Data augmentation at infinite width

group transformation

$$\begin{aligned}\mu_t(\rho(g)x) &= \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\underbrace{\rho(g)Y}_{=Y} \\ &= \mu_t(x)\end{aligned}$$

for invariance

Mean prediction

$$\mu_t(x)$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)]$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\theta_0=\text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \rightarrow \infty} \underbrace{\frac{1}{n} \sum_{\theta_0=\text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)}_{\text{mean prediction of deep ensemble}}$$

Equivariant Ensembles

Ensembles of networks become
exactly equivariant under data augmentation

Emergent Equivariance in Deep Ensembles

Jan E. Gerken ^{*1} Pan Kessel ^{*2}

Abstract

We show that deep ensembles become equivariant for all inputs and at all training times by simply using full data augmentation. Crucially, equivariance holds off-manifold and for any architecture

emergent: while the prediction of the ensemble is equivariant, the predictions of its members are not. In particular, the ensemble members are not required to have an equivariant architecture.

We rigorously derive this surprising emergent equivariance

Equivariant Ensembles

Ensembles of networks become
exactly equivariant under data augmentation

Emergent Equivariance in Deep Ensembles

Jan E. Gerken ^{*1} Pan Kessel ^{*2}

Abstract

We show that deep ensembles become equivariant for all inputs and at all training times by simply using full data augmentation. Crucially, equivariance holds off-manifold and for any architecture

emergent: while the prediction of the ensemble is equivariant, the predictions of its members are not. In particular, the ensemble members are not required to have an equivariant architecture.

We rigorously derive this surprising emergent equivariance

Also true for finite-width ensembles: [\[Nordenfors, Flinth 2024\]](#)

Equivariant NTKs

Extend NTK framework to equivariant models

Equivariant Neural Tangent Kernels

Philipp Misof^a

Pan Kessel^b

Jan E. Gerken^a

Abstract

Little is known about the training dynamics of equivariant neural networks, in particular how it compares to data augmented training of their non-equivariant counterparts. Recently, neural tangent kernels (NTKs) have emerged as a powerful tool to analytically study the training dynamics of wide neural networks. In this work we take an important step towards a theoretical understanding of

Could show that an ensemble of augmented MLPs corresponds to an ensemble of GCNNs.

Methods from Physics

Non-Gaussian Corrections from Physics

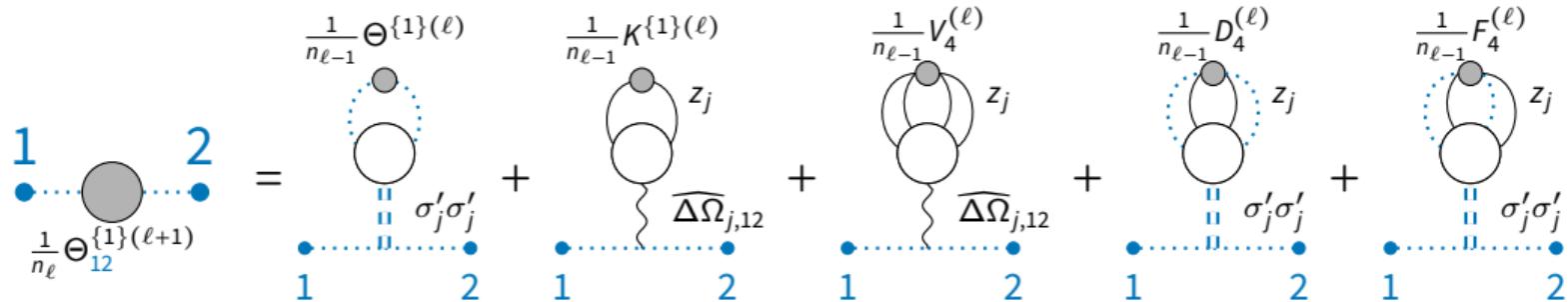
- 👎 Gaussians are limiting
- 👍 Taylor-expand in 1/width
- 👍 Use techniques from quantum field theory

Non-Gaussian Corrections from Physics

- 👎 Gaussians are limiting
- 👍 Taylor-expand in 1/width
- 👍 Use techniques from quantum field theory

Neural Networks	Quantum Field Theory
infinite width	no interactions
Gaussian distribution	free fields
finite-width	interactions

Feynman diagrams for Neural Networks



Finite-Width Neural Tangent Kernels from Feynman Diagrams

Max Guillen^{*a}

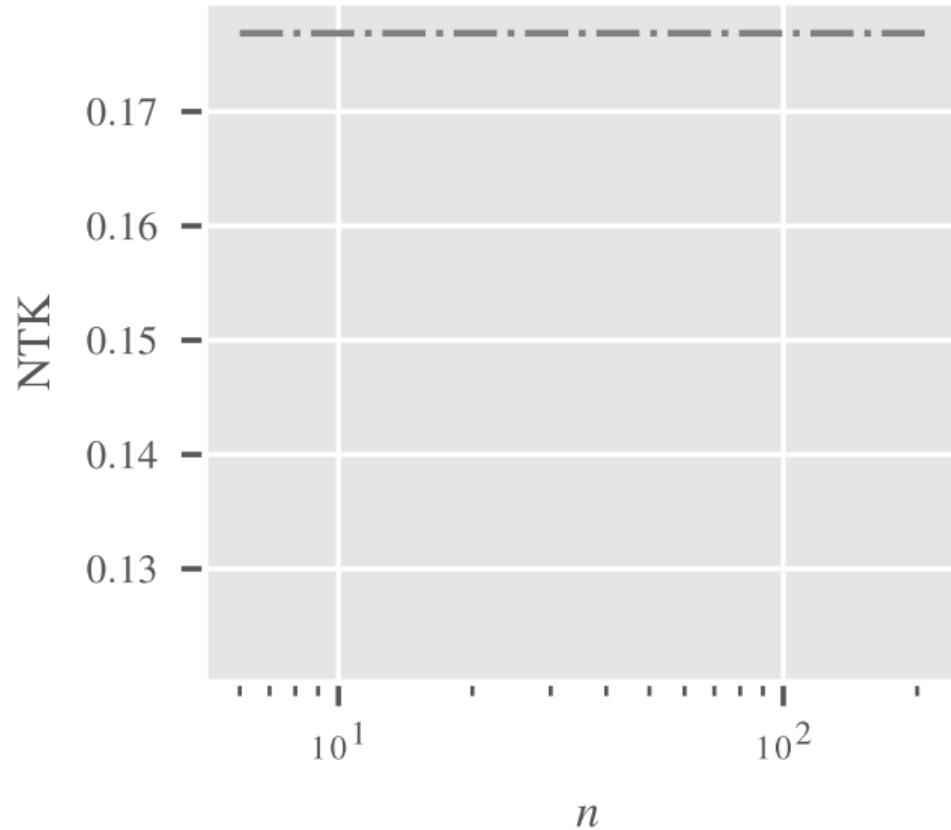
Philipp Misof^{*a}

Jan E. Gerken^a

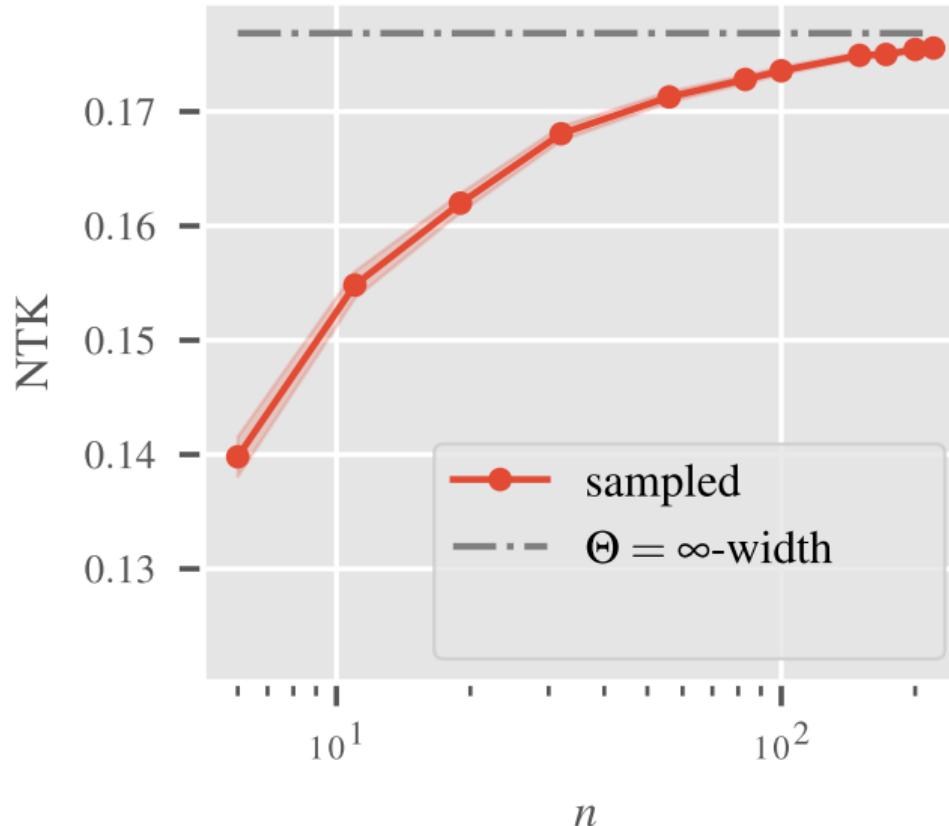
Abstract

Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks. In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding full analytic control over the training dynamics. However, at infinite width, important properties of training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the necessary algebraic manipulations and enable the computation of layer-wise recursive relations for arbitrary statistics involving activations, NTKs and certain higher-derivative tensors (dNTK and

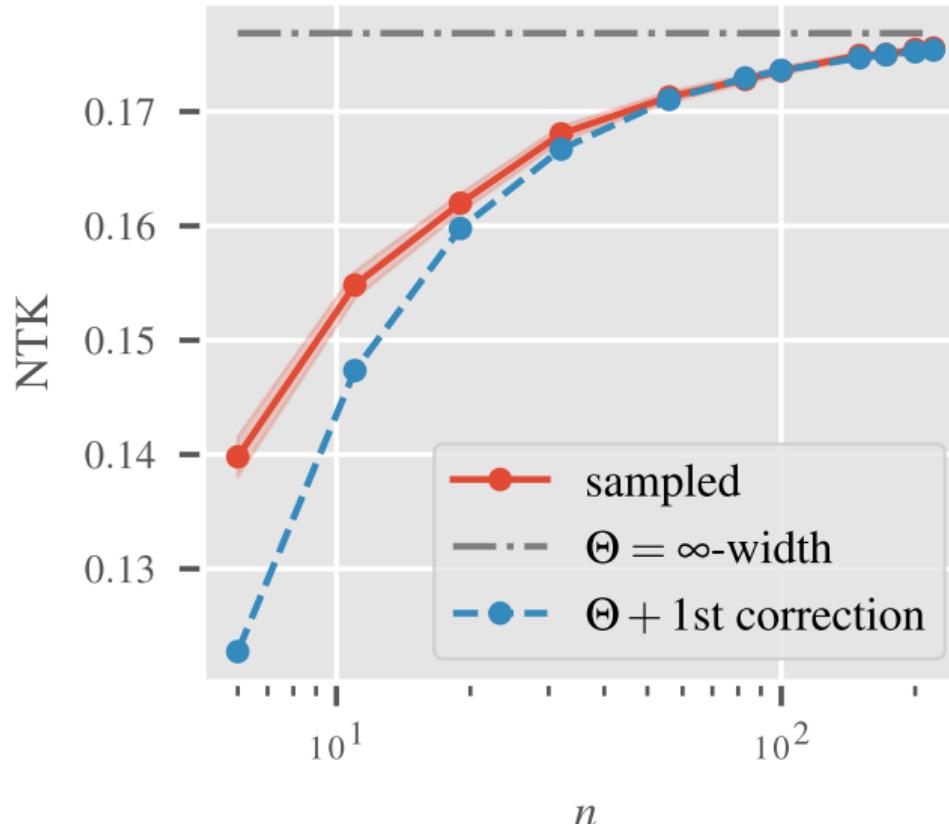
Finite-width corrections



Finite-width corrections



Finite-width corrections



Outlook

- Understanding training dynamics of neural networks remains challenging

Outlook

- Understanding training dynamics of neural networks remains challenging

⇒ Use symmetric case as simplified approach to study training

Outlook

- Understanding training dynamics of neural networks remains challenging
- ⇒ Use symmetric case as simplified approach to study training
- How does data augmentation affect the training dynamics?

Outlook

- Understanding training dynamics of neural networks remains challenging
- ⇒ Use symmetric case as simplified approach to study training
- How does data augmentation affect the training dynamics?
- How do the training dynamics of equivariant models differ from those of non-equivariant models?

Outlook

- Understanding training dynamics of neural networks remains challenging
- ⇒ Use symmetric case as simplified approach to study training
- How does data augmentation affect the training dynamics?
- How do the training dynamics of equivariant models differ from those of non-equivariant models?
- Use insights from physics to make progress

Website

Home Members Research Output + Seminar Teaching + Positions

Geometry, Algebra and Physics in Deep Neural Networks

The research group on Geometry, Algebra and Physics in Deep Neural Networks (GAPinDNNs) is based at the Department for Mathematical Sciences at Chalmers University of Technology and the University of Gothenburg. Our vision is to develop a mathematical foundation for deep learning which elevates the field into a theoretically well-grounded science.

News

Paper accepted in NeurIPS 2025 22 Sep 2025

Our paper on Learning Chern Numbers of Topological Insulators with Gauge Equivariant Neural Networks has been accepted for a poster at NeurIPS 2025! In this paper, we combine lattice gauge equivariant networks with a novel training mechanism to learn topological invariants (Chern numbers) of topological insulators. This paper combines several beautiful topics in machine learning, physics and mathematics.

First author is our new PhD student Longe Huang. Congratulations to his first publication! From our group, Hampus Lihander, Daniel Persson and Jan Gärden were also involved. Thanks to our physics-collaborators Olegkiandr Balabanyan (then at Stockholm University) and Mats Granath (University of Gothenburg) for their expertise and a fun collaboration!

Thank you!