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Machine learning with neural networks
● Neural networks

⇒ N
θ
: Rm → Rn , θ ∈ RN: parameters

e.g. N
θ
: picture↦ P(cat)

● Training data
examples x ↦ y of target function, e.g.

D =
⎧⎪⎪⎨⎪⎪⎩

↦ 1.0 , ↦ 0.0 , . . .

⎫⎪⎪⎬⎪⎪⎭
● Optimize θ so thatN

θ
matches the target function
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Neural networks

● Consider a very simple function

fW,b : Rm → Rn fW,b(x) =

σ(

Wx + b

)

σ(x) =max(0, x)

● Compose many of these

N
θ
= fW(L),b(L) ○ fW(L−1),b(L−1) ○ ⋯ ○ fW(1),b(1)

● Optimize all parameters

θ = {(W(`),b(`)) ∣ ` = 1, . . . , L}

What can we say aboutN
θ
mathematically?
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Surprising properties of neural networks

Neural networks can approximate any function

Consider a networkNθ : R→ Rwith one hidden layer of width 4

f (1)i (x) = σ(W
(1)
i x + b(1)i ), i = 1, 2, 3, 4

Nθ(x) =
4
∑
i=1

W(2)i f (1)i (x) + b
(2)

For random parameters, we get
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Surprising properties of neural networks

Neural networks work very well!
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Surprising properties of neural networks

Only a small subnetwork matters

Possible to find tiny subnetworks which have almost the same performance as the full network
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[Frankle, Carbin 2019]
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Hyperparameter tuning

● We use some algorithm to optimize the parameters θ

● Hyperparameters are not optimized

● Parameters of the optimization algorithm
● Sizes of intermediate vector spaces
● Howmany layers, which non-linear function…

● In practice, huge amount of compute spent on trial and error
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Geometry and Physics in Neural Networks

● Can we exploit the geometry of the data distribution?

● Can we exploit symmetries of the target function?

● Can we use methods from theoretical physics to understand
the learning process?

Geometric Deep Learning
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Geometry of the Data Distribution
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Manifold Hypothesis
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Adversarial Examples
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Adversarial Examples

vs.
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Geometry of the Data Manifold

Usemodel to learn diffeomorphism to normal distribution

Euclideanmetric δ inducedmetric γ
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Optimize along the Data Manifold

Follow the gradient in the normalized coordinates
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Symmetries
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Symmetry of the Data

⇒ Equivariant Networks

15



Symmetry of the Data

⇒ Equivariant Networks

15



Symmetry of the Data

⇒ Equivariant Networks

rotate

15



Symmetry of the Data

⇒ Equivariant Networks

rotate

network network

15



Symmetry of the Data

⇒ Equivariant Networks

rotate

network network

rotate

15



Symmetry of the Data

⇒ Equivariant Networks

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)
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Equivariant neural networks
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Equivariant Neural Networks

What is the general mathematical formulation
of equivariant neural networks?

Fiber bundles

Representation theory

Spherical harmonics,
Wigner matrices…
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Equivariant Neural Networks

Use gauge equivariant network to learn topological invariants

18



Learning symmetries

19



Learning symmetries

19



Learning symmetries

19



Impose symmetries or learn them?
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Practitioners like data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?
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Infinite-Width Networks

22



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ
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Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
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Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)
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Mean prediction

μt(x)

= E
θ0∼initializations[Nθt(x)] = limn→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble
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Equivariant Ensembles

Ensembles of networks become
exactly equivariant under data augmentation

Also true for finite-width ensembles: [Nordenfors, Flinth 2024]
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Equivariant NTKs

Extend NTK framework to equivariant models

Could show that an ensemble of augmented MLPs corresponds to an ensemble of GCNNs.
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Methods from Physics
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Non-Gaussian Corrections from Physics
Gaussians are limiting

Taylor-expand in 1/width

Use techniques from quantum field theory

Neural Networks Quantum Field Theory

infinite width no interactions
Gaussian distribution free fields

finite-width interactions
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Feynman diagrams for Neural Networks
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Finite-width corrections
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Outlook
● Understanding training dynamics of neural networks remains
challenging

Use symmetric case as simplified approach to study training

● How does data augmentation affect the training dynamics?

● How do the training dynamics of equivariant models differ
from those of non-equivariant models?

● Use insights from physics to make progress
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Website

Thank you!
35

https://gapindnns.github.io/members/Jan_Gerken.html
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