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Can we understand data augmentation theoretically?
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Training dynamics under continuous gradient descent:

learning rate [ loss
dN@(X) Z o (X X oL
dt O ON(x;)

training sample
with the empirical neural tangent kernel (NTK)
ON(x) ON(x")

Og(x,x") =
2. 98, 8,




Inﬁnite Width limit [Jacot et al. 2018]

//A\§ 4 A\;,é/'A
\VAY



Inﬁnite Width limit [Jacot et al. 2018]

//A\\% V4 A\\,




Infinite Width limit [Jacot et al. 2018]

b NTK becomes independent of initialization




Infinite Width limit [Jacot et al. 2018]

b NTK becomes independent of initialization

& NTKbecomes constantin training

o‘,"” I‘



Infinite Width limit [Jacot et al. 2018]

b NTK becomes independent of initialization

& NTKbecomes constantin training

ZI0NY NTK can be computed for most networks



Infinite Width limit [Jacot et al. 2018]

o‘,"” I‘

b NTK becomes independent of initialization
& NTKbecomes constantin training
@5 NTK can be computed for most networks

v Training dynamics can be solved
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Mean prediction from NTK acot et al. 2015]

® Atinfinite width, the mean prediction is given by

neural tangent kernel train labels

He(x) = O, X)O(X, X)L (1 - e 1OXX)tyy

learning rate j

train data
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Data augmentation at infinite width
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Data augmentation at infinite width

( group transformation

He(p(g)x) = ©(p(9)x, X)O (X, X)H(1 - e 1OXXt)y

augmented data
augmented labels
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Kernel transformation

The neural tangent kernel © as well as the NNGP kernel K transform
according to

©(p(9)x,0(9)x") = Pk (9)©(x,X o () ,
K(p(9)x,p(9)x") = o (9)K(x, X" )or(9) ,

forallg e Gand x,x’ € X.
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Kernel transformation

The neural tangent kernel © as well as the NNGP kernel K transform
according to

©(p(9)x,0(9)x") = Pk (9)©(x,X o () ,
K(p(9)x,p(9)x") = o (9)K(x, X" )or(9) ,

forallg e Gand x,x’ € X.
Hence, for MLPs,

O(p(g)x,p(g)x") =0(x,x") = ©(p(g)x,x") =O(x,p (g)x")

12



Permutation shift

¢ On thetraining data, group transformations permute the
samples

,O(g)X/‘ = Xng(i) ’ Mg € Sn
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Permutation shift
¢ On thetraining data, group transformations permute the
samples
p(9)X; :Xng(i)’ Mg € SN

e Therefore, for a permutation of training samples associate to g

N(g)e(X,X) = 0(p(g)X,X)
=O(X,pH(g)X)
=0(X,X)(M(g))"
=0(X,X)N(9)

13
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Data augmentation at infinite width

( group transformation
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augmented data
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Data augmentation at infinite width

group transformation
( augmented labels
ue(p(9)x) = O, X)O(X,X) (1 - e 19X N)o(g)y
=Y

for invariance
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Data augmentation at infinite width

( group transformation

ke (p(g)x) = ©(x, X)O(X,X) (1 - e 10Xty p(g)y

= pt(X)

~—
. :Y-
for invariance

14



Mean prediction

e (x)
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Mean prediction

pe(x) = [E60~initializations [Net ()]
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Mean prediction

init,

1
e (x) :[E60~initializations[Net(x)] = lim — Z Net(X)
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90 inity



Mean prediction

pe(x) = [E60~initializations [Net (x)] =

init,

- lim 1 >, Ng(x)

n—-oo n
90 inity

mean prediction ofdeep ensemble
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Main conclusion

Deep ensembles trained with data augmentation are equivariant.
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Main conclusion

Deep ensembles trained with data augmentation are equivariant.

v Proof of exact equivariance for

¢ full data augmentation
* infinite ensembles

v Equivariance holds for all training times
v Equivariance holds away from the training data

v Holds also for finite-width networks [Nordenfors, Flinth 2024]
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Intuitive explanation

v Equivariance holds for all training times

v Equivariance holds away from the training data
® Atinfinite width, the mean output at initialization is zero
everywhere.

= Training with full data augmentation leads to an equivariant
function.
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What Does An Augmented Ensemble Converge To?
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Rotating images
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Rotating images

f : pixels - colors
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Rotating images

f : pixels - colors

= [preg(9)f1(x)
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Data augmentation and NTKs
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Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

o S

1
SRR = 5] 2, O™ (Fopreg(9)F)
geG

Then

U () = 2B () e

at infinite width.

20



Data augmentation and NTKs

1

@non-augf, f/) _ T

> O™ (f, preg(9)F")
geG
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Data augmentation and NTKs

1

@non-aug(f f/y 5

Z @aUg(f,Preg(g)f’)
geG

® Given an architecture with NTK ©3Yg,
find an architecture with NTK @non-aug
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Group convolutions

[Cohen, Welling 2016]
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(g) = [ dxx(p(g ™ W) F(x) lifting

f'(g) = /(;dg k(g~th) f(h) group convolution

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt preg

¢ Ordinary convolutions

F(y) = [ dewte=y) F(x)

e Group convolutions

f'(g) = fde k(p(g~1)x) f(x) lifting
f'(g) = /(;dg k(g~th) f(h) group convolution
p_ 1 f .
f'= vol(G) Gdgf(g) group pooling i



GCNNs

Stack GConv-layers to obtain an invariant network
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GCNNs

Stack GConv-layers to obtain an invariant network

lifting o GConv o

GConv —> GPool
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NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

KO (1,1 =E [[z(“(f)](g) ([Z“)(f')](g'))T]
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NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

KO = E[20019) (20016)) ]

o (¢ 11y _g| 3 2200)() (A0 ()]
99" s 06 26()

wwf]
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NTKs for GCNNs

Z0(N)(9) = [ dgx(g m) 2 D()](h)

The layer-recursion for a GCNN-layer is given by

(€+l) / l [
K> J(f,f") = — dh
9,9 ( ) |SK| Sk

(0)
Kahg'h

(£,
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NTKs for GCNNs Z0(N])(g) = [dgr(gn) 2D ()(h)

The layer-recursion for a GCNN-layer is given by

(0+1) ¢ g1 _i[ (0) /
Kag () =157 s A Kghgn(F.F)

(f-l—l) n _ (ﬁ—i—l) / if (ﬁ) /
Oyt (11" = Kg (0,1 1y [ O (1,

25



GCNNs
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Stack GConv-layers to obtain an invariant network
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NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

liting o GConv o GConv —> GPool

Compute NTK with layer-wise recursion

0 ——— oW (£,f) — 02 (£,f) —> 08, (') —> 0, (£,f) —> L) (£,1")
9.9 9.9 9.9 9.9 9.9
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NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

liting o GConv o GConv —> GPool

Compute NTK with layer-wise recursion

0———— 00 (1)) — O (F.F') —> O, (£f) —> O () —> ©F) (£.f') ——— O(£f")
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NTKs of MLPs and GCNNs

e Consider two neural networks

eGCNN (f f’

Z @MLP(f Preg(g)f)

|G‘ geG
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Data augmentation of MLPs
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Data augmentation of MLPs

before: non-aug \V [ before: aug
@GCNN(f f’ Z @MLP(f Preg(g)f )
‘G| geG
trainingthe MLPon  _  training the GCNN on

> G-augmented data _\ unaugmented data

in the ensemble mean, Vt, Vx
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Data augmentation of CNNs
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Data augmentation of CNNs
e Considera CNN

Conv o

Conv

Conv

Pool
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Data augmentation of CNNs

e Consider a CNN and a GCNN invariant wrt. roto-translations

Conv o Conv o Conv Pool

lifting o GConv o GConv —> GPool

1
QONN(f, ") = n >, eCNN(f,Preg(r)f,)

reCp
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Data augmentation of CNNs

e Consider a CNN and a GCNN invariant wrt. roto-translations

Conv o Conv o Conv Pool

lifting o GConv o GConv —> GPool

1
eGCNN(f’ f,) = Z eCNN(f,Preg(r)f,)
n reCp
= By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN
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Experiments
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Ising model
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Ising model
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Relative orbit standard deviation
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Histological slices

[Kather et al. 2018]
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Histological slices

[Kather et al. 2018]
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Histological slices
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Further experimental results

v Emergent invariance for rotated FashionMNIST
v Partial augmentation for continuous symmetries

v Emergent equivariance (as opposed to invariance)
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Comparison to other methods
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Comparison to other methods

o Models trained on rotated FashionMNIST
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Comparison to other methods

c» Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

Cy Cs Ci6
DeepEns+DA 3.85+0.12 7.72+0.34 15.24:0.69
only DA 3.41+0.18 6.73+0.24 12.77+0.71
E2CNN! 4+0.0 7.71+0.21 15.08:0.34

Canon? 4:0.0 7.45:0.14

12.41+0.85

1 Weiler et al. 2019], 2[Kaba et al. 2022]
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Convergence of augmented CNNs to GCNNs
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Convergence of augmented CNNs to GCNNs

L2(CNN-logits, GCNN-logits)
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Finite-width from Feynman diagrams



Restrictions of the infinite-width limit
The infinite-width limit...

5 Yields compact expressions

5 Is under complete analytic control
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Restrictions of the infinite-width limit
The infinite-width limit...

5 Yields compact expressions

5 Is under complete analytic control

p Only Gaussian distributions

@ Linearization of the model in the parameters
p No feature learning

® Use methods from physics to compute finite-width effects
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Field theory

¢ |nfield theory, consider probability distribution over fields
(functions)

e Typically: Gaussian probability distributions with small
corrections
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Field theory

¢ |nfield theory, consider probability distribution over fields
(functions)

Typically: Gaussian probability distributions with small
corrections

The Gaussian limit corresponds to free fields

Corrections correspond to interactions between fields

Compute statistics of these fields
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Feynman diagrams

Feynman diagrams are used to compute statistics
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Feynman diagrams

Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering

[a(p3) v*u(p1)][U(pa) vuu(p2)]

. 2
Y — —je
(p1 - p3)>?
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Non-Gaussian Corrections from Physics

¢ Taylor-expand network statistics in 1/width

e Use Feynman diagrams to compute non-Gaussian corrections
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Non-Gaussian Corrections from Physics

¢ Taylor-expand network statistics in 1/width

e Use Feynman diagrams to compute non-Gaussian corrections

Neural Networks Field Theory

infinite width no interactions
Gaussian distribution free fields
finite-width interactions
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Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.
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Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

=) & =
cumutant N f preactivation NTK fluctuation, AG"* = () —E4[8(1)]

E5Tz" (1), 2 (x2), BB (13, 0)]

I3f4
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Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

() = ~
camuton oreactivation NTK fluctuation, A8 = &) - E[8(9)]

E5Tz" (1), 2 (x2), BB (13, 0)]

I3f4
Decompose these into tensors

1/ (¢ .

() o s
+F 111371214 1423611/4812/3

1324

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

=) & =
cumutant N f preactivation NTK fluctuation, AG"* = () —E4[8(1)]

E5Tz" (1), 2 (x2), BB (13, 0)]

I3f4
Decompose these into tensors

1/ (¢ .

() o
+F 111371214 "~ 1423

1324 5

i1i4 i) i3)

Gram tensor, F1(24 = FO (x1,x3,X2, %)
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Tensors for neural network statistics

= Keeping track of these tensors is sufficient.

[Roberts, Yaida 2022]
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Tensors for neural network statistics

= Keeping track of these tensors is sufficient.

At order 1/n, we have
e K, K1} and V4 for preactivations

e 0,011}, Aand Bfor derivatives

¢ D and F for mixed statistics

[Roberts, Yaida 2022]
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Tensors for neural network statistics

= Keeping track of these tensors is sufficient.

At order 1/n, we have
K, K1} and V4 for preactivations

©, ©{1}, A and B for derivatives

D and F for mixed statistics

6 more for higher derivatives, needed for training

[Roberts, Yaida 2022]
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Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.
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Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

Far) = (010 00) 07
4
o 30 (002D 16 D) o KETKED L,

a’ﬂ"r’gzl
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Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

[ o(z(9 (x1)) K— Gaussian expectation with cov. K(©)
(¢

ngﬂlf) - ( ) (f) ,(6) ,(€)> (0) 6(6) g Components of (K(©))~1
4 0 (¢ ( 5 (¢
- <U§ )G;( )Z<(1)> Y@ <o§_ )04( ) /(3)>K€ K&))/Ké) (3)84

a:ﬁ’Y)Szl
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Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

[ o(z(9 (x1)) K— Gaussian expectation with cov. K(©)
(¢

Ff?zj) _< ) (f) ,(6) ,(€)> (0) 6(6) QCOmponentsof(K(@)_1
4 0 (¢ ¢ 5 (¢
’ ﬁ25 1<0§ )";( )Z<(1 )> K() <°§ )"4( : /(3)>K ¢ K&))/Ké) (3)84
a,p,v,0=

Solving this system of recursions yields the complete network
statistics at order 1/n.
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Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

f o(z(9 (x1)) K— Gaussian expectation with cov. K(©)
(¢

ngzi) _< ) (6) ,(6) ,(€)> (0) 6(6) QCOmponentsof(K(@)_1
4 0 (¢ ¢ 5 (¢
’ :BZS 1<0§ )";( )Z<(1 )> K() <°§ )"4( : /(3)>K ¢ K&))/Ké) (3)84
a,p,v,0=

Solving this system of recursions yields the complete network
statistics at order 1/n.

O Computing these recursions analytically is very laborious
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Feynman diagrams

Use Feynman diagrams to compute these recursions.
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Feynman diagrams

Use Feynman diagrams to compute these recursions.

e For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

B mo 1
zg= e J=O WNE
a
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Feynman diagrams

Use Feynman diagrams to compute these recursions.

e For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

B mo 1
zg= e  { )y=O >WG$‘i~E
a

e For derivatives, need to find Feynman rules by inspecting
analytic expressions
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Feynman rules relevant for the F-tensor

F(Z+l)

ajaszajay

1
n

ool

ha i,

1
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Feynman rules relevant for the F-tensor

B e oOol® 1

ha i,

F(Z+l)

ajaszajay

1
n

The propagator () satisfies selection rules, e.g.

49



Feynman rules relevant for the F-tensor

B e oOol®

ha i,

F(Z+l)

ajaszajay

The propagator () satisfies selection rules, e.g.

e |t cannot be directly connected to other propagators
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Feynman rules relevant for the F-tensor

B e oOol® 1

ha i,

F(Z+l)

ajaszajay

The propagator () satisfies selection rules, e.g.

e |t cannot be directly connected to other propagators

e Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
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Feynman rules relevant for the F-tensor

B e oOol® 1

ha i,

F(Z+l)

ajaszajay

The propagator () satisfies selection rules, e.g.

e |t cannot be directly connected to other propagators

e Dotted lines attached to a propagator do not appear in the
Gaussian expectation value

¢ Pairs of dashed lines of the same color connected to the
propagator add a factor of ©
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The F-recursion
Draw all diagrams possible for the F-tensor at order 1/n
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The F-recursion
Draw all diagrams possible for the F-tensor at order 1/n

Compare to the analytical expression

1o(evn)y _ 1, () () () i(
LD - L0000

4
P 0500y o060

n a,,B,y,S:l

Bs (£)
Oy 94 "2 >K(£)K?€))/K(€)F Y364
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The NTK recursion at finite width

1o Lyl

Neg-1 Ng—1

1 2
° o

1} (4+1
Loem
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The NTK recursion at finite width

1
°

o N

1} (4+1
Loem

® Feynman diagrams allow for much simpler derivation
of recursion relations
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Numerical results

0.17 =

= 0.15

0.13 -

IIIII 1 1 1 1 IIIII 1
10! 102

n
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Numerical results

0.17 =
0.16 -
E 0.15 =
Z
0.14 =
—&— sampled
013 - == @ = co-width

10! 102
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Numerical results

0.17 =
0.16 =
E 0.15 =
Z
0.14 -
II —o— sampled
/ —_— = co-wi
0.3 = 4 ® = co-width
‘I —=®= -} Istcorrection
g 1 1 T 1
10! 102
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Numerical results

0.26 =
0.24 -
0.22 -
[a W
>
0.18 - Il —&— sampled
/ == K — co-width
- 7
0.16 .
‘I —®- K+ Ist correction
1 T I 1 1 1 1 1 T I 1
10! 10?
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Key takeaways
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Key takeaways

e Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:
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® Deep ensembles become exactly equivariant

® Deep ensembles trained with data augmentation are group
convolutional networks

¢ To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion
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Key takeaways

e Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:

® Deep ensembles become exactly equivariant

® Deep ensembles trained with data augmentation are group
convolutional networks

¢ To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

e The corrections can be computed conveniently using Feynman
diagrams
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Papers

e Emergent Equivariance in Deep Ensembles
Jan E. Gerken™, Pan Kessel*

ICML 2024 (Oral)
e Equivariant Neural Tangent Kernels
Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025
¢ Finite-Width Neural Tangent Kernels from Feynman Diagrams

Max Guillen™, Philipp Misof*, Jan E. Gerken
arXiv: 2508.11522

* Equal contribution

Thank you!
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