

Neural Tangent Kernels: Data augmentation and Feynman diagrams

Jan E. Gerken

UNIVERSITY OF
GOTHENBURG

in collaboration with

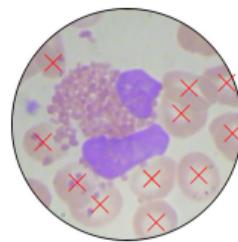
Pan Kessel

Philipp Misof

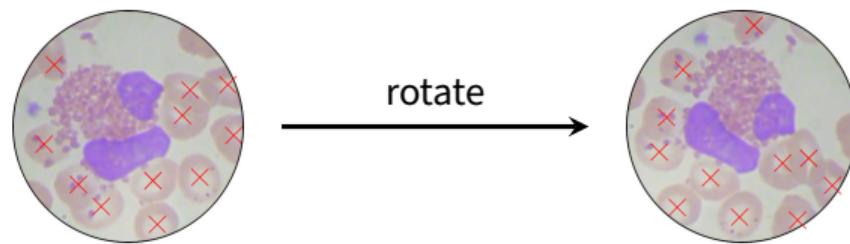
Max Guillen

Symmetries in deep learning

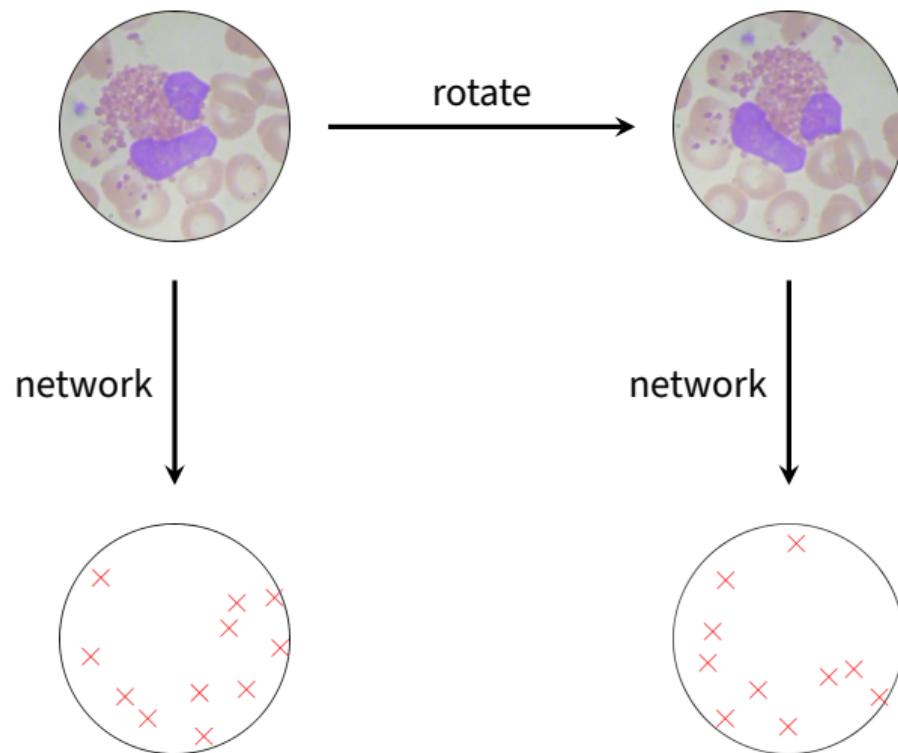
Symmetries in deep learning



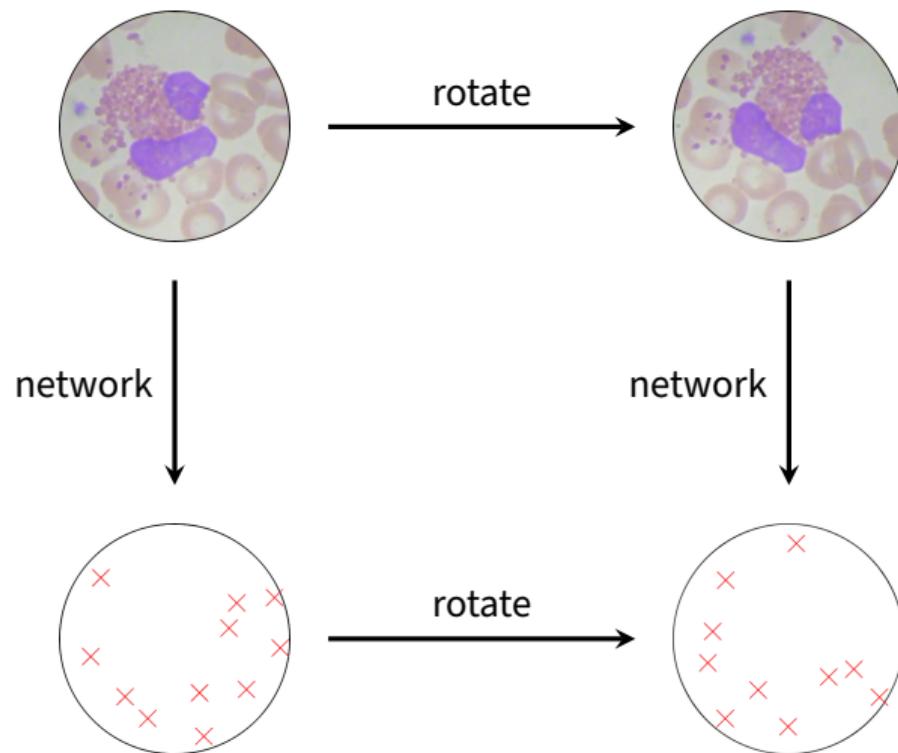
Symmetries in deep learning



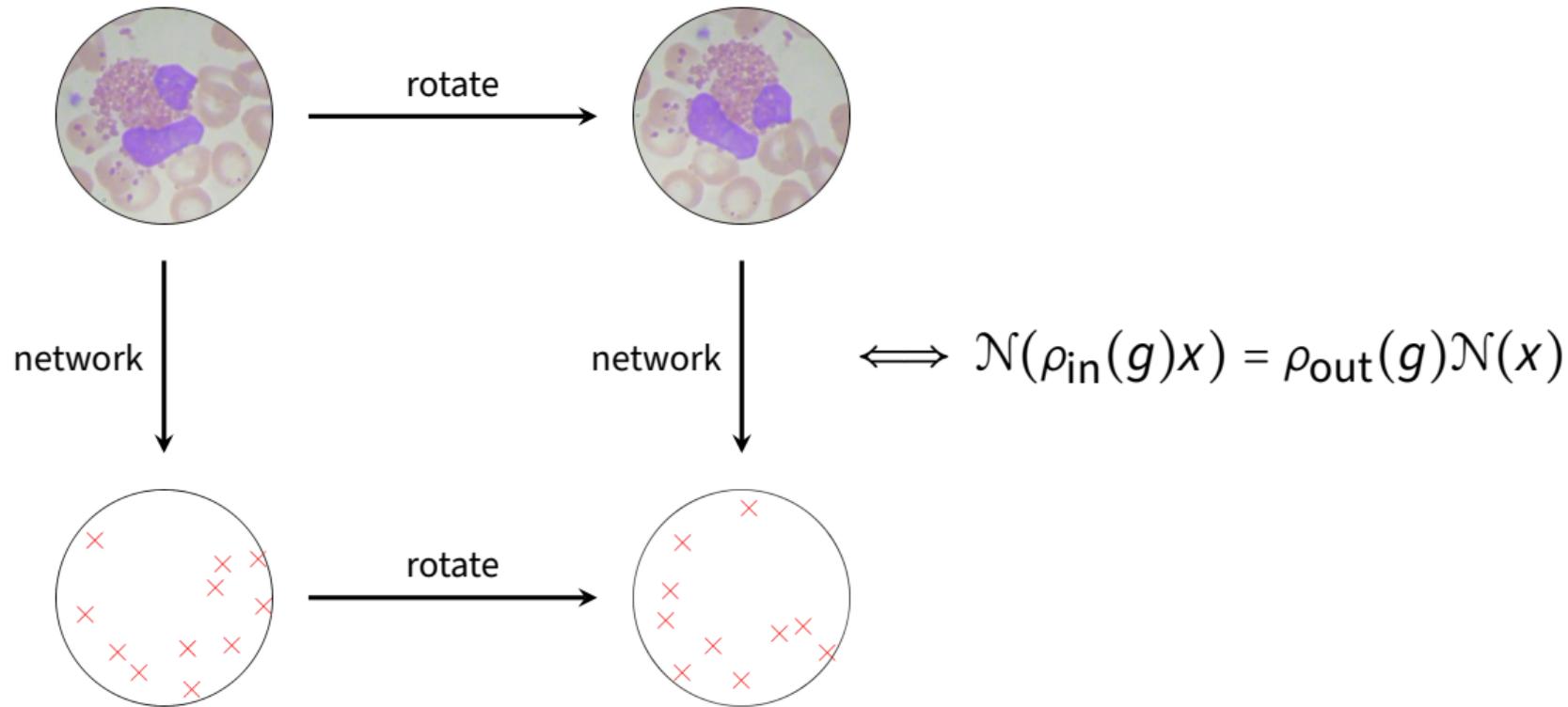
Symmetries in deep learning



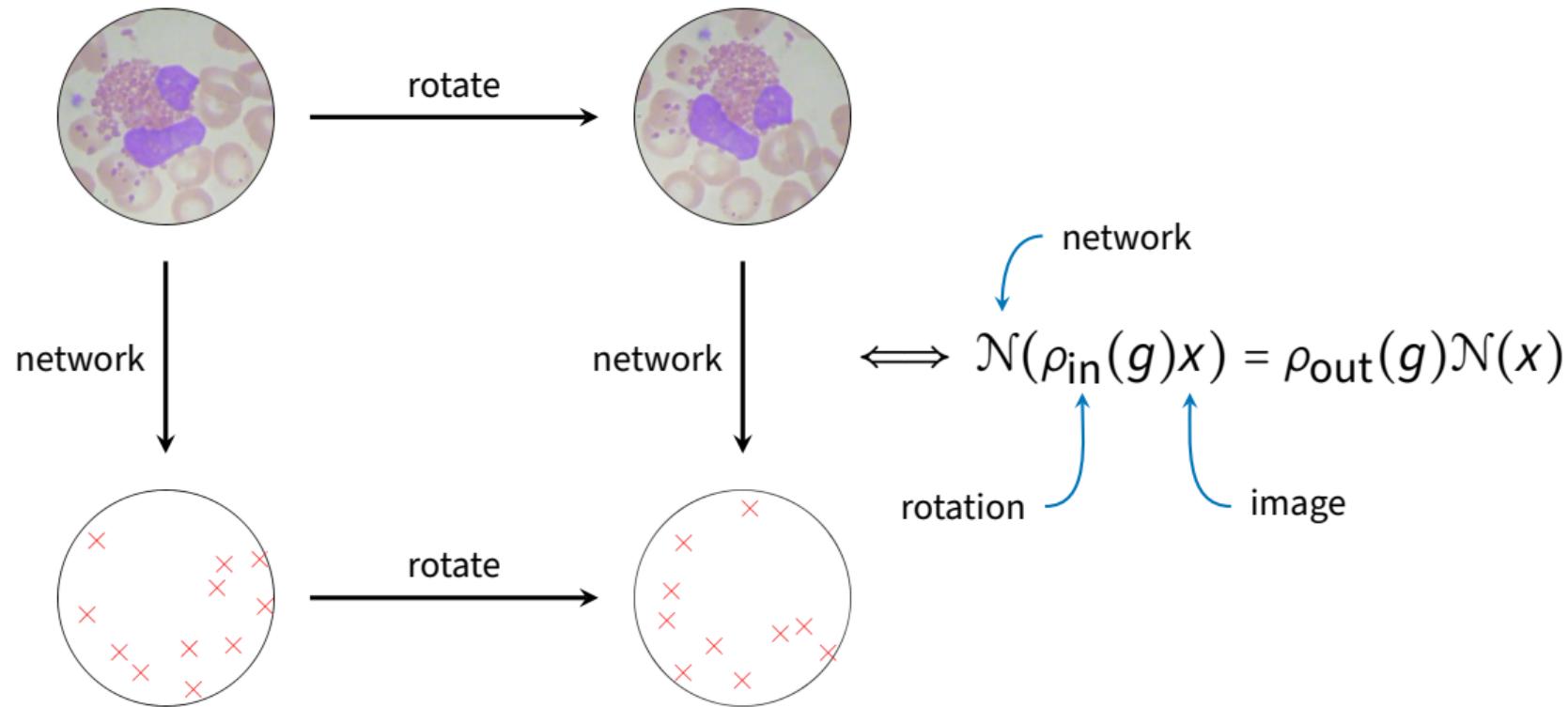
Symmetries in deep learning



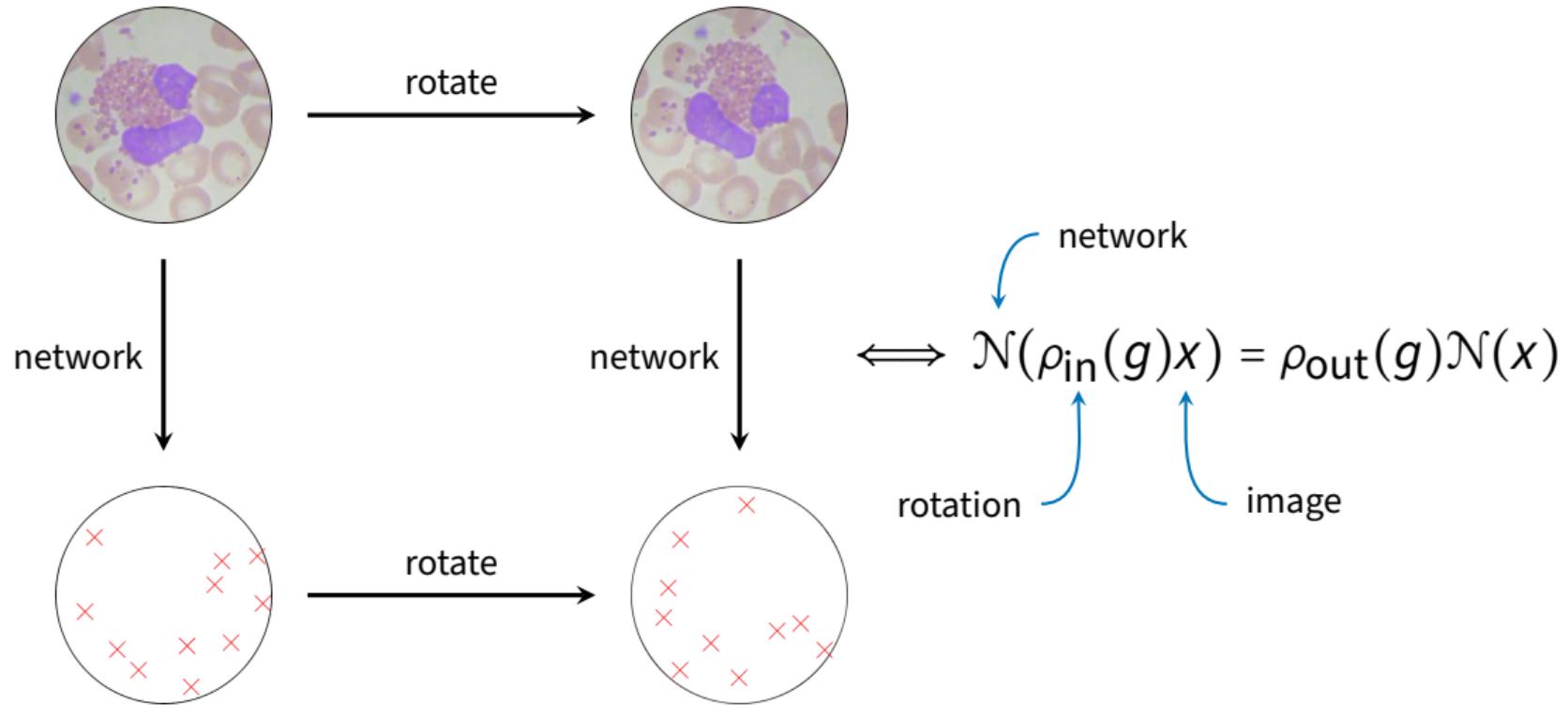
Symmetries in deep learning



Symmetries in deep learning



Equivariance



Equivariant neural networks

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen
University of Amsterdam

T.S.COHEN@UVA.NL

Max Welling
University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a *deep* network because all the layers in such a network are *translation equivariant*: shifting the image and then feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen
University of Amsterdam

Max Welling
University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable function-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs incorporate functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Dilemmus et al., 2016; Marcus et al., 2017; Woern et al., 2017; Tancik et al., 2017; Alabd, 2017; Cohen et al., 2018) has explored new CNN architectures that are *invariant* to various (nondiscrete) mathematical transformations.

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrn et al., 2017; Mallya et al., 2017; Mallya, 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode modifiable invariance constraints

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,³ Martin Lachica,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois of Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of California San Diego, San Diego, California 92093, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA

⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we extend these ideas to the quantum regime by

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrall et al., 2017; Mallya et al., 2017; Mallya, 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode inductive biases in particular coordinate

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,⁴ Martin Loeffler,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
⁵Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA

⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we extend these ideas to the quantum regime by

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^d Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences,
Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia,
Duning Street, Beijing 100089, China

^cCERN, EP Department,
CH-1211 Geneva 23, Switzerland

^dSchool of Physics, Peking University,
Chenfu Road, Beijing 100871, China

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (G-CNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformation groups. Through the use of symmetry-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrall et al., 2017; Mallya et al., 2017; Cohen et al., 2018) has explored new CNN architectures that are

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen,^{1,2} Louis Schatzki,^{3,4} Paolo Branca,^{1,5} Michael Rapone,^{1,6} Patrick J. Coles,³ Frédéric Sauvage,⁴ Martin Laecca,^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA
⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we present theory for the quantum analogs for

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^c Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia, Daxing Street, Beijing 100098, China

^cCERN, EP Department, CH-1211 Geneva 23, Switzerland

^dSchool of Physics, Peking University, Chencula Road, Beijing 100871, China

E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials

Simon Batzner^{a,1} Albert Musoelian¹ Lixin Sun¹ Mario Geiger² Jonathan P. Mallon³ Mordechai Kornblith² Nicola Molinari¹ Tess E. Smith^{4,5} and Boris Kozinsky^{a,1,3}

¹John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

²École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
³Robert Bosch Research and Technology Center, Cambridge, MA 02120, USA

⁴Computational Research Division and Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94730, USA

⁵Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA 02132, USA

This work presents Neural Equivariant Interatomic Potentials (NeqIP), an E(3)-equivariant neural network approach for learning interatomic potentials from *ab-initio* calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NeqIP¹ employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and

Equivariant neural networks

Group Equivariant Convolutional Networks

Taco S. Cohen

University of Amsterdam

Max Welling

University of Amsterdam

University of California Irvine

Canadian Institute for Advanced Research

T.S.COHEN@UVA.NL

M.WELLING@UVA.NL

Abstract

We introduce Group equivariant Convolutional Neural Networks (GCNNs), a natural generalization of convolutional neural networks that reduces sample complexity by exploiting symme-

Convolution layers can be used effectively in a deep network because all the layers in such a network are *translation equivariant*: shifting the image and the feeding it through a number of layers is the same as feeding the original image through the same layers and then shifting the resulting feature maps (at least up to edge-effects). In

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging

Shiqi Gong^{a,1} Qi Meng^b Jue Zhang^b Huilin Qu^c Congqiao Li^c Sitian Qian^c Weitao Du^a Zhi-Ming Ma^a Tie-Yan Liu^b

^aAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, Beijing 100190, China

^bMicrosoft Research Asia, Daming Street, Beijing 100089, China

^cCERN, EP Department, CH-1211 Geneva 23, Switzerland
^dSchool of Physics, Peking University, Chencula Road, Beijing 100871, China

Equivariant Transformer Networks

Kai Sheng Tai¹ Peter Bailis¹ Gregory Valiant¹

Abstract

How can prior knowledge on the transformation invariance of a domain be incorporated into the architecture of a neural network? We propose Equivariant Transformers (ETs), a family of differentiable end-to-image mappings that preserve the robustness of neural networks to pre-defined continuous transformations. Through the use of specially-derived canonical coordinate systems, ETs implement functions that

scaling to each training image). While data augmentation typically helps reduce the test error of CNN-based models, there is no guarantee that transformation invariance will be enforced for data not seen during training.

In contrast to training time approaches like data augmentation, recent work on group equivariant CNNs (Cohen & Welling, 2016; Diefenbach et al., 2016; Marcus et al., 2017; Worrall et al., 2017; Mallya et al., 2017; Cohen et al., 2018) has explored new CNN architectures that are designed to encode invariance to particular transformations

Theory for Equivariant Quantum Neural Networks

Quynh T. Nguyen^{1,2} Louis Schatzki^{3,4} Paolo Branca^{1,5} Michael Raymer^{1,6} Patrick J. Coles¹ Frédéric Sauvage⁴ Martin Laecca^{1,7} and M. Cirone³

¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

³Information Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

⁴Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

⁵Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA

⁶Department of Mathematics, University of California Davis, Davis, California 95616, USA

⁷Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Quantum neural network architectures that have little-to-no inductive biases are known to face trainability and generalization issues. Inspired by a similar problem, recent breakthroughs in machine learning address this challenge by creating models encoding the symmetries of the learning task. This is materialized through the usage of equivariant neural networks whose action commutes with that of the symmetry. In this work we present those to the quantum regime

HIERARCHICAL, ROTATION-EQUIVARIANT NEURAL NETWORKS TO SELECT STRUCTURAL MODELS OF PROTEIN COMPLEXES

Stephan Eismann*

Department of Applied Physics
Stanford University
seismann@stanford.edu

Raphael J.L. Townsend*

Department of Computer Science
Stanford University
raphael0@cs.stanford.edu

Nathaniel Thomas*

Department of Physics
Stanford University
nthomas103@gmail.com

Milind Jagota

Department of Electrical Engineering
Stanford University
mjagota@stanford.edu

Bowen Jing

Department of Computer Science
Stanford University
bjing@cs.stanford.edu

Ron O. Dror

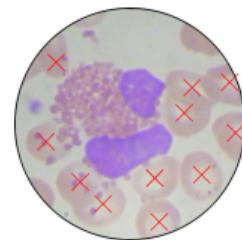
Department of Computer Science
Stanford University
rondror@cs.stanford.edu

ABSTRACT

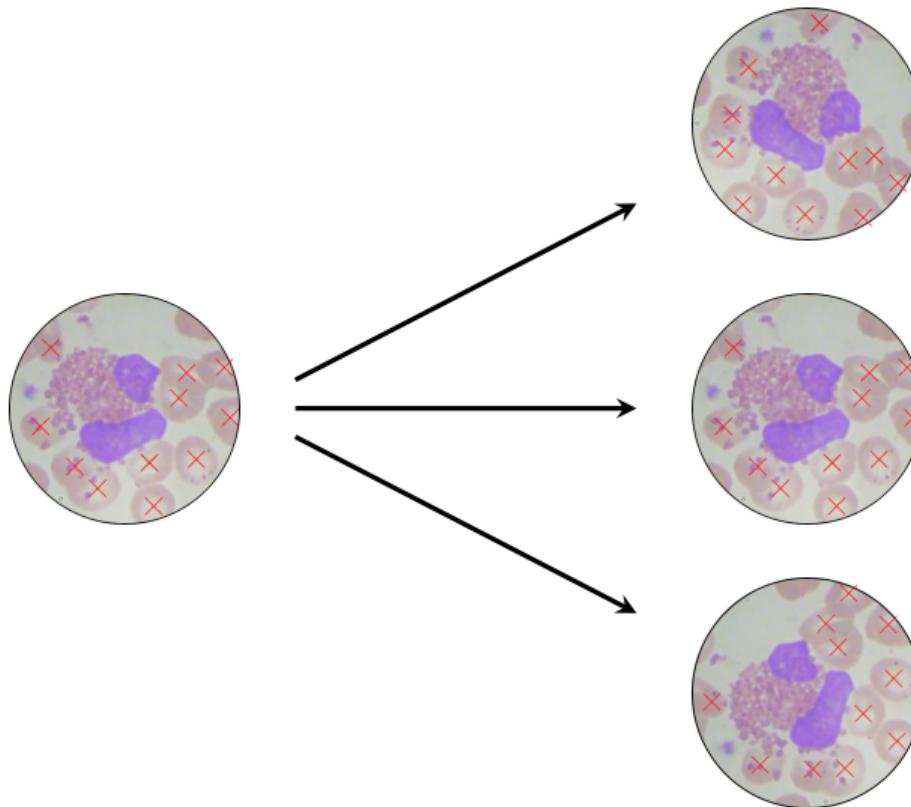
Predicting the structure of multi-protein complexes is a grand challenge in biochemistry, with major implications for basic science and drug discovery. Computational structure prediction methods generally leverage pre-defined structural features to distinguish accurate structural models from less accurate ones. This raises the question of whether it is possible to learn characteristics of accurate models directly from atomic coordinates of protein complexes, with no prior assumptions. Here we introduce a machine learning method that learns directly from the 3D positions of all atoms to

Data augmentation

Data augmentation



Data augmentation



Data augmentation

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s41589-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

Josh Abramson^{1,2}, Jonas Adler³, Jack Danger⁴, Richard Evans⁵, Tim Green², Alexander Pritzel⁶, Olaf Ronneberger⁷, Lindsay Williams⁸, Andrew J. Bellard⁹, Jennifer Cao¹⁰, Sebastian V. Engel¹¹, David A. Fiser¹², Chaitanya Ganti¹³, Michael O'Neill¹⁴, David Reith¹⁵, Kathryn Raynor¹⁶, Zachary Rasmussen¹⁷, Alenay Sengulay¹⁸, Esteri Aravot¹⁹, Charles Bostick²⁰, Ottavia Bortolisi²¹, Alex Bridgland²², Alenay Chempur²³, Miles Congreve²⁴, Alexander L. Cowen-Rivers²⁵, Andrew Cowie²⁶, Michael Figari²⁷, Michael Gromiha²⁸, Michael Gromiha²⁹, Michael Gromiha³⁰, Yannick J. Khuu³¹, Catherine M. R. Lew³², Koko Peris³³, Anil Purohit³⁴, Pavan Ray³⁵, Sulabh Ray³⁶, Adrien Reimann³⁷, Ashvak Thivierge³⁸, Catherine Tong³⁹, Sergei Vakser⁴⁰, Ellen S. Zhang⁴¹, Michal Zelma⁴², Augustin Zidek⁴³, Victor Bapst⁴⁴, Puthrenet Kochi⁴⁵, Max Jaderberg⁴⁶, Dennis Hesselbarth⁴⁷ & John M. Jumper^{48,49}

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1,2}. Here we describe the AlphaFold 3 model with a substantially updated architecture that can predict the structure of proteins and their interactions with complex ligands, including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.30888/47599-024-00487>

Received 10 December 2020

www.ijdmotors.com

Ассоциация 356 April 2014

Philosophical

Open access

*Richard Evans¹, Tim Green¹,
Amy Wilmer², Andrew J. Bellard²,
David A. Evans³, Chia-Chun Hung⁴,
Yu-Ting Huang⁴, Zhenyu Wu⁵, Alida Zengelis⁶,
Yi-Chun Chen⁷, Alan C. Gammie⁸,
John R. Evans⁹, Andrew Conine¹⁰, Michael P. Lenz¹¹,
Rakesh K. Patel¹², David J. Kuhn¹³, Christine M. R. Lenz¹⁴,
Karl Paschal Burchell¹⁵, Michael Sheehan¹⁶,
Catherine Tong¹⁷, Segev Genack¹⁸, Eilen D. Zhang¹⁹,
Justen Zidek²⁰, Victor Bapst²¹, Purnelust Keil²², Max Jaderberg²³,
& John M. Jumper²⁴*

Introduction of AlphaFold 2¹ has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{2–4}. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1008/1475966-024-03483-w>

Downloaded At: 11:59 22 September 2009

PERIODIC REVIEWS: THE ENRICHMENT OF

Accepted: 29 April 2024

Philosophical

Open access

Josh Abramson^{1,2}, Jennifer A. Doudna³, Richard E. Green¹, Tim Green¹,
Alexander Prizzi¹, Daniel H. Rabinowitz¹, Mark A. Riedel¹,
Jonathan Rubin¹, Daniel C. Schuster¹, Michael J. Sosich¹,
John T. Stukenberg¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Eric A. Tamm¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Milan Vojtěchovský¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Kerry W. Wilmer¹, Andrew J. Ballard¹,
Jeffrey A. Winkler¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Amy Winkler¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Tatyana Yarchova¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Daniela Zengeljajev¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Daniela Zengeljajev¹, Daniel C. Tamm¹, Michael J. Tamm¹,
Andrea Cossu¹, Michael Pignataro¹,
Michael Pignataro¹, Richard Jozef¹, Asim A. Khan^{1,2}, Caroline M. R. Lane¹,
Pascal Sauly¹, Sabine Leibiger¹, Adrian Neudecker¹,
Catherine Tong¹, Svetlana Yakhnina¹, Elisa D. L. Yiu¹,
Justus Zscheil¹, Victor Bapst¹, Purnendu Kahl¹, Max Jäderberg^{1,2},
John M. Kumper^{1,2}

Introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1–6}. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

No Equivariance!

Structure prediction of
molecular interactions

DOI: 10.1186/1475-4686-10-102
Published: 12 January 2011
Jens-Albrecht Pfeifer¹, Alexander Pecht¹, Jürgen Böckeler¹, Michael O'Boyle², Ester Argon², Miles D. Briney², Richard J. P. Morris², Pascal Tong², Ulrich Senn², Carsten Röder², Ingo Beetz², Stephan Röder², Walter Böger², Peter Neudecker¹ & John M. Jumper²

¹ Institute of Experimental Biophysics, University of Regensburg, Regensburg, Germany
² Department of Chemistry, University of Cambridge, Cambridge, UK

Abstract

Background: Alpha-helices have been predicted to have a predilection for binding to aromatic residues and the interaction score, reflecting a hydrophobic interaction, is often used to determine the binding mode and design. Here, we describe our findings that this is not the case.

Results: We find that the interaction score of a helix with a target molecule is not invariant under a 90° rotation of the helix. This is true for all helices, including the well-known Phe41 helix of the ribosome. The lack of invariance is due to the fact that the interaction score is a measure of the hydrophobic interaction between the helix and the target molecule, and not the hydrophobic interaction between the helix and the target molecule.

Conclusion: The interaction score of a helix with a target molecule is not invariant under a 90° rotation of the helix. This is true for all helices, including the well-known Phe41 helix of the ribosome. The lack of invariance is due to the fact that the interaction score is a measure of the hydrophobic interaction between the helix and the target molecule, and not the hydrophobic interaction between the helix and the target molecule.

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s4324-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1–3}. Here we describe the AlphaFold 3 model with a substantially updated architecture that is able to predict the structure of a wide range of complex molecules including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Richard Evans^{1,2}, Tim Green^{1,2}, Alexander Prizel^{1,2}, Tony Willmetts¹, Andrew J. Bellard¹, Michael O’Hearn¹, David A. K. Hart¹, Chaitanya Rangwala¹, Michael O’Hearn¹, David A. K. Hart¹, Chaitanya Rangwala¹, Zohreh Ehsan¹, Smita Sengupta¹, Smita Sengupta¹, Alena Bartels^{1,2}, Alex Brigandt¹, Alenay Chempur¹, Ester Arguello¹, Miles Miles¹, Fabio Fabio¹, Daniel Daniel¹, Yannick Yannick¹, Catherine M. R. Lew¹, Catherine M. R. Lew¹, Pouya Pouya¹, Sulabh Sulabh¹, Michael Michael¹, Catherine Tong¹, Sergei Sergei¹, Ellen S. Zhang¹, Martin Zádálek¹, Victor Victor¹, Pudhvezet Pudhvezet¹, Max Jaderberg^{1,2}, & John M. Jumper^{1,2}

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model’s performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jaitly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the chemical structure of molecules (or, more precisely, bond angles) we are able to radically simplify structure generation and predict the number of other

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Despite the molecular complexity, when no constraints are imposed (such as constraints on bond types and spatial arrangements determined by chiral centers), the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unusable for even moderately small molecules. Systematic methods, like DMRGA (Hawkins et al., 2018)

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43998-024-07487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1–3}. Here we describe the AlphaFold 3 model with a substantially updated architecture that achieves state-of-the-art performance in predicting the structure of complex systems including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Michael O’Hearn^{1,2}, Timothy J. Green^{1,2}, Tony Willmetts¹, Andrew J. Ballard¹, Michael O’Hearn^{1,2}, Michael O’Hearn^{1,2}, David A. K. Hart¹, Chaitanya B. Rangwala¹, Suresh Raghavachari¹, Zachariah M. Sengalapuri¹, David A. Bortz^{1,2}, Alex Bridgland¹, Alenay Chempakar¹, Steven Rivera¹, Andrew Cowie¹, Michael Figari¹, Catherine Young¹, Yves A. Kihl¹, Catherine H. Lew¹, Paul A. Pappalardo¹, Subhadeep Singh¹, Aditi S. Patel¹, Catherine Tong¹, Sergey Vlasov¹, Ellen S. Zhang¹, Austin Ziskin¹, Victor Kapur¹, Pudhvezh Kachi¹, Max Jaderberg^{1,2}, & John M. Jumper^{1,2}

Probing the effects of broken symmetries in machine learning

Marco F. Langer¹, Sergey N. Prodnikov² and Michele Ceriotti¹

Laboratory of Computational Science and Modelling and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

¹ Author to whom any correspondence should be addressed.

E-mail: michele.ceriotti@epfl.ch

Keywords: machine learning, symmetry-constrained models, atomistic modeling, molecular simulations

Supplementary material for this article is available [online](#)

Abstract

Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to be exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries—rotations in particular—constraints the model design space and implies more complicated architectures that are often also computationally demanding. There are indications

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model’s performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jolly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the chemical structure of molecules (e.g., minimum bond angles) we are able to radically simplify structure generation and predict the number one thousand times faster than prior methods.

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Despite the molecular complexity, the number of conformations that satisfy specific constraints, such as bond types and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unusable for even moderately small molecules. Systematic methods, like DMFGA (Hawkins et al., 2018),

Data augmentation

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

<https://doi.org/10.1038/s43998-024-02487-w>

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

Open access

Check for updates

No Equivariance

The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design^{1,2}. Here we describe the AlphaFold 3 model with a substantially updated architecture that is able to predict the structure of a wide range of complex molecules including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy

Josh Abrahamsen^{1,2}, Alexander Pritzel^{1,2}, Michael O’Hearn^{1,2}, David A. K. Hart^{1,2}, Chaitanya R. Ravuri^{1,2}, Zohreh Amini^{1,2}, Sambasiva Rangwala^{1,2}, David Bartels³, Alex Bridgland⁴, Alenay Chempakar⁵, Steven Rivera⁶, Andrew Cowie⁶, Michael Fipplar⁶, Daniel Gómez-Rodríguez⁷, Yuxuan Li⁸, Christopher M. R. Lew⁹, David P. Papp¹⁰, Pouyan Rave¹¹, Subhadeep Roy¹², Adrien Roux¹³, Catherine Tong¹⁴, Sergei Vakser¹⁵, Ellen S. Zhang¹⁶, Austin Ziskin¹⁷, Victor Kapur¹⁸, Pudhvezh Kashi¹⁹, Max Jaderberg²⁰, & John M. Jumper^{1,2}

Probing the effects of broken symmetries in machine learning

Marcel F. Langer¹, Sergey N. Prodnikov² and Michele Ceriotti³

Laboratory of Computational Science and Modelling and National Centre for Computational Design and Discovery of Novel Materials MARVEL, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

¹ Author to whom any correspondence should be addressed.

E-mail: michele.ceriotti@epfl.ch

Keywords: machine learning, symmetry-constrained models, atomistic modeling, molecular simulations

Supplementary material for this article is available [online](#)

Abstract

Symmetry is one of the most central concepts in physics, and it is no surprise that it has also been widely adopted as an inductive bias for machine-learning models applied to the physical sciences. This is especially true for models targeting the properties of matter at the atomic scale. Both established and state-of-the-art approaches, with almost no exceptions, are built to be exactly equivariant to translations, permutations, and rotations of the atoms. Incorporating symmetries—rotations in particular—constraints the model design space and implies more complicated architectures that are often also computationally demanding. There are indications

The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Eric Qu¹
UC Berkeley
ericqu@berkeley.edu

Aditi S. Krishnapriyan¹
UC Berkeley, LBNL
aditik1@berkeley.edu

Abstract

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as

Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics

Marloes Arts,^{1,2,3,4} Victor García Satorras,^{1,5,6} Chin-Wei Huang,¹ Daniel Zügner,⁵ Marco Federici,^{1,3} Cecilia Clementi,^{5,2} Frank Noé,¹ Robert Pinsler,⁶ and Rianne van den Berg¹

¹ Work done during an internship at Microsoft Research (Amsterdam).

² University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen, 2100, Denmark.

³ AI4Science, Microsoft Research, Evert van de Beekstraat 354, Amsterdam, 1111 CZ, The Netherlands.

⁴ AI4Science, Microsoft Research, Karl-Liebknecht-Straße 32, Berlin, 10178, Germany.

⁵ University of Amsterdam, Information Institute, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

⁶ Freie Universität Berlin, Department of Physics, Arnimallee 12, Berlin, 14195, Germany.

^{1,2} AI4Science, Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, United Kingdom.

³ Equal contribution.

E-mail: ma@di.ku.dk; victorgar@microsoft.com

Abstract

Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular

Swallowing the Bitter Pill: Simplified Scalable Conformer Generation

Yuyang Wang¹, Ahmed A. Elbag^{1,2}, Navdeep Jaitly¹, Joshua M. Susskind¹, Miguel Ángel Bautista¹

Abstract

We present a novel way to predict molecular conformers through a simple formulation that sidesteps many of the heuristics of prior works and achieves state of the art results by using the advantages of scale. By training a diffusion generative model directly on 3D atomic positions without any constraints about the explicit structure of molecules (e.g., minimum bond angles) we are able to radically simplify structure generation and predict conformers more than 1000 times faster than state-of-the-art methods.

is the vast complexity of the 3D structure space, encompassing factors such as bond lengths and torsional angles. Designing the molecular conformers that satisfy these constraints, such as bond types and spatial arrangements determined by chiral centers, the conformational space experiences exponential growth with the expansion of the graph size and the number of rotatable bonds (Aszkenasy & Gomez-Bombarelli, 2022). This complicates brute force and exhaustive approaches, making them virtually unusable for even moderately small molecules. Systematic methods, like DMFGA (Hawkins et al., 2018),

Data augmentation

- thumb-up Easy to implement
- thumb-up No specialized architecture necessary

Data augmentation

- 👍 Easy to implement
- 👍 No specialized architecture necessary
- 👎 No exact equivariance

Data augmentation

- 👍 Easy to implement
- 👍 No specialized architecture necessary
- 👎 No exact equivariance

Can we understand data augmentation theoretically?

Empirical NTK

Training dynamics under continuous gradient descent:

$$\frac{d\mathcal{N}_\theta(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^N \Theta_\theta(x, x_i) \frac{\partial L}{\partial \mathcal{N}(x_i)}$$

learning rate

loss

training sample

Empirical NTK

Training dynamics under continuous gradient descent:

$$\frac{d\mathcal{N}_\theta(x)}{dt} = -\frac{\eta}{N} \sum_{i=1}^N \Theta_\theta(x, x_i) \frac{\partial L}{\partial \mathcal{N}(x_i)}$$

learning rate

loss

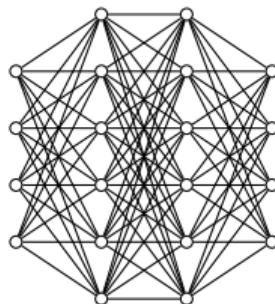
training sample

with the **empirical neural tangent kernel (NTK)**

$$\Theta_\theta(x, x') = \sum_\mu \frac{\partial \mathcal{N}(x)}{\partial \theta_\mu} \frac{\partial \mathcal{N}(x')}{\partial \theta_\mu}$$

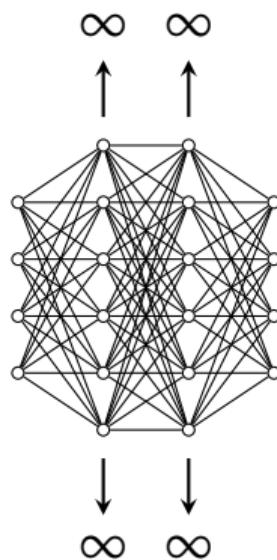
Infinite width limit

[Jacot et al. 2018]



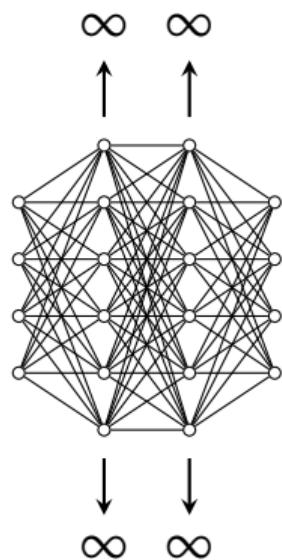
Infinite width limit

[Jacot et al. 2018]



Infinite width limit

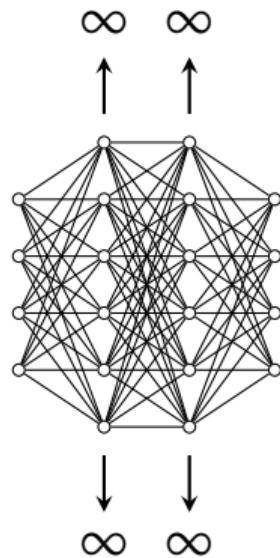
[Jacot et al. 2018]



👍 NTK becomes independent of initialization

Infinite width limit

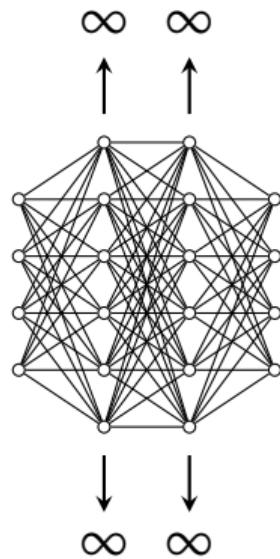
[Jacot et al. 2018]



- 👍 NTK becomes independent of initialization
- 👍 NTK becomes constant in training

Infinite width limit

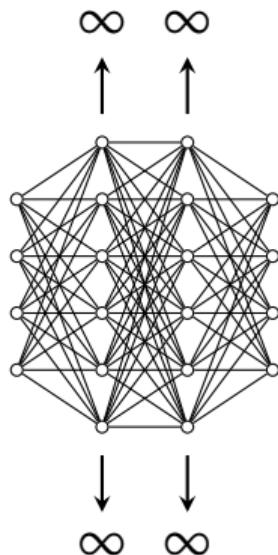
[Jacot et al. 2018]



- NTK becomes independent of initialization
- NTK becomes constant in training
- NTK can be computed for most networks

Infinite width limit

[Jacot et al. 2018]



- 👍 NTK becomes independent of initialization
- 👍 NTK becomes constant in training
- 👍 NTK can be computed for most networks
- ✓ Training dynamics can be solved

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

train data

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

neural tangent kernel

learning rate

train data

Mean prediction from NTK

[Jacot et al. 2018]

- ① At infinite width, the mean prediction is given by

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

Diagram illustrating the components of the mean prediction formula:

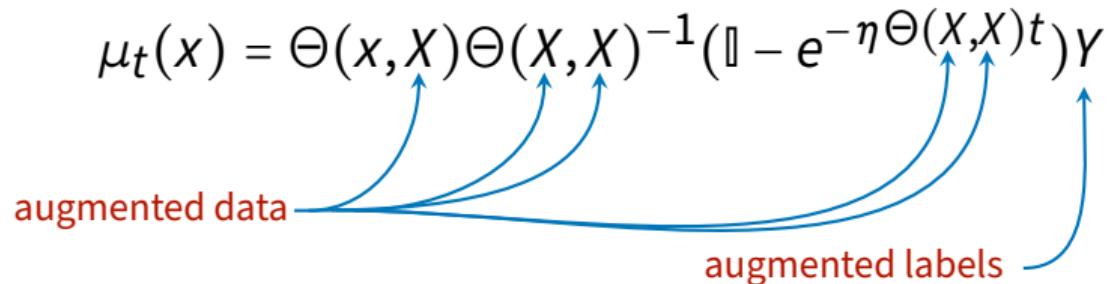
- neural tangent kernel**: Points to the term $\Theta(x, X)$.
- train labels**: Points to the term Y .
- learning rate**: Points to the term $e^{-\eta \Theta(X, X)t}$.
- train data**: Points to the term $\Theta(X, X)^{-1}$.

Data augmentation

Data augmentation at infinite width

$$\mu_t(x) = \Theta(x, X) \Theta(X, X)^{-1} (\mathbb{I} - e^{-\eta \Theta(X, X)t}) Y$$

Data augmentation at infinite width

$$\mu_t(x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$


augmented data

augmented labels

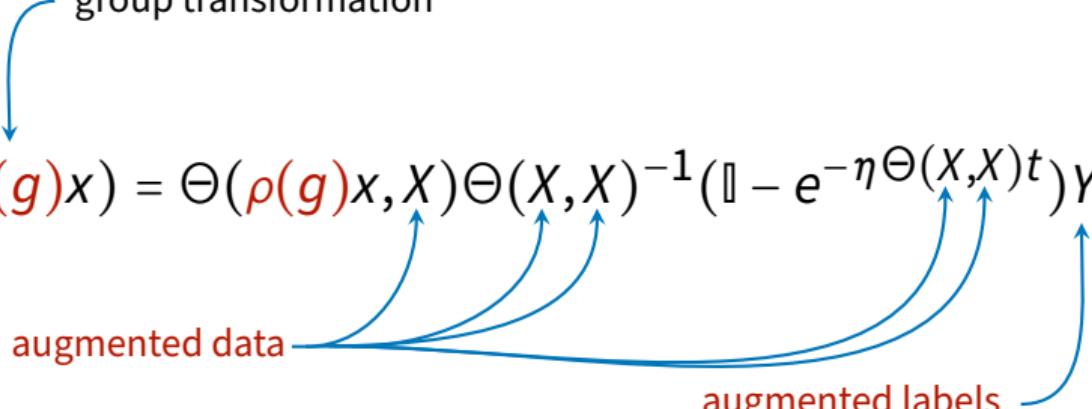
Data augmentation at infinite width

group transformation

$$\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

augmented data

augmented labels



Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel K transform according to

$$\begin{aligned}\Theta(\rho(g)x, \rho(g)x') &= \rho_K(g)\Theta(x, x')\rho_K^\top(g), \\ K(\rho(g)x, \rho(g)x') &= \rho_K(g)K(x, x')\rho_K^\top(g),\end{aligned}$$

for all $g \in G$ and $x, x' \in X$.

Kernel transformation

The neural tangent kernel Θ as well as the NNGP kernel K transform according to

$$\begin{aligned}\Theta(\rho(g)x, \rho(g)x') &= \rho_K(g)\Theta(x, x')\rho_K^\top(g), \\ K(\rho(g)x, \rho(g)x') &= \rho_K(g)K(x, x')\rho_K^\top(g),\end{aligned}$$

for all $g \in G$ and $x, x' \in X$.

Hence, for MLPs,

$$\Theta(\rho(g)x, \rho(g)x') = \Theta(x, x') \quad \Rightarrow \quad \Theta(\rho(g)x, x') = \Theta(x, \rho^{-1}(g)x')$$

Permutation shift

- On the training data, group transformations permute the samples

$$\rho(g)x_i = x_{\pi_g(i)}, \quad \pi_g \in S_N$$

Permutation shift

- On the training data, group transformations permute the samples

$$\rho(g)x_i = x_{\pi_g(i)}, \quad \pi_g \in S_N$$

- Therefore, for a permutation of training samples associate to g

$$\begin{aligned}\Pi(g)\Theta(X, X) &= \Theta(\rho(g)X, X) \\ &= \Theta(X, \rho^{-1}(g)X) \\ &= \Theta(X, X)(\Pi^{-1}(g))^\top \\ &= \Theta(X, X)\Pi(g)\end{aligned}$$

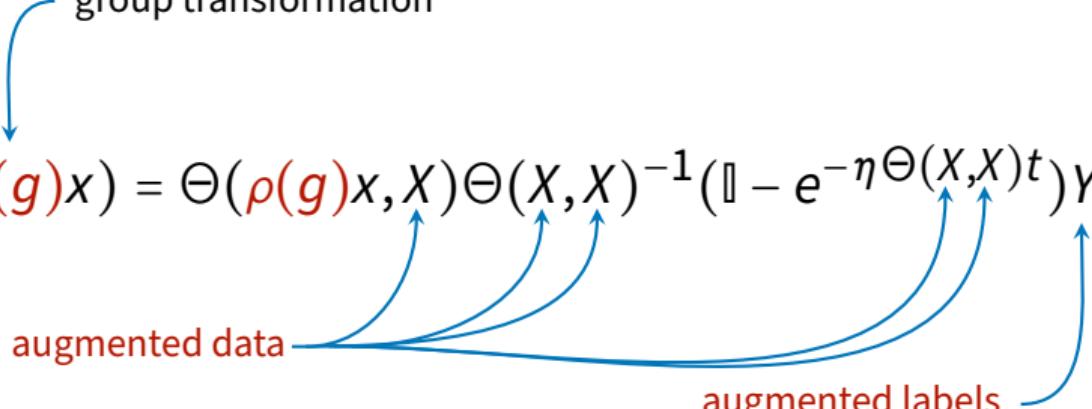
Data augmentation at infinite width

group transformation

$$\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

augmented data

augmented labels



Data augmentation at infinite width

$$\mu_t(\rho(g)x) = \Theta(\rho(g)x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})Y$$

group transformation

for augmented data

augmented data

augmented labels

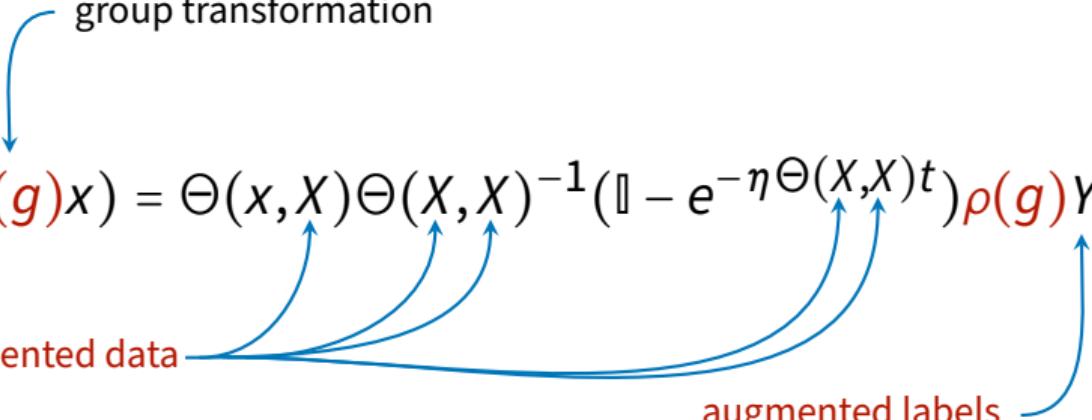
Data augmentation at infinite width

group transformation

$$\mu_t(\rho(g)x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\rho(g)Y$$

augmented data

augmented labels



Data augmentation at infinite width

$$\mu_t(\rho(g)x) = \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\underbrace{\rho(g)Y}_{=Y \text{ for invariance}}$$

group transformation

augmented labels

Data augmentation at infinite width

group transformation

$$\begin{aligned}\mu_t(\rho(g)x) &= \Theta(x, X)\Theta(X, X)^{-1}(\mathbb{I} - e^{-\eta\Theta(X, X)t})\underbrace{\rho(g)Y}_{=Y} \\ &= \mu_t(x)\end{aligned}$$

for invariance

Mean prediction

$$\mu_t(x)$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)]$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{\theta_0=\text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)$$

Mean prediction

$$\mu_t(x) = \mathbb{E}_{\theta_0 \sim \text{initializations}} [\mathcal{N}_{\theta_t}(x)] = \lim_{n \rightarrow \infty} \underbrace{\frac{1}{n} \sum_{\theta_0=\text{init}_1}^{\text{init}_n} \mathcal{N}_{\theta_t}(x)}_{\text{mean prediction of deep ensemble}}$$

Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Main conclusion

Deep ensembles trained with data augmentation are equivariant.

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles

Main conclusion

Deep ensembles trained with data augmentation are equivariant.

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
- ✓ Equivariance holds for all training times

Main conclusion

Deep ensembles trained with data augmentation are equivariant.

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Main conclusion

Deep ensembles trained with data augmentation are equivariant.

- ✓ Proof of exact equivariance for
 - full data augmentation
 - infinite ensembles
- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data
- ✓ Holds also for finite-width networks

[Nordenfors, Flinth 2024]

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

Intuitive explanation

- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

- ➊ At infinite width, the mean output at initialization is zero everywhere.

Intuitive explanation

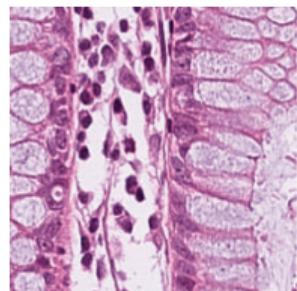
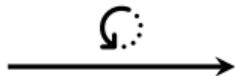
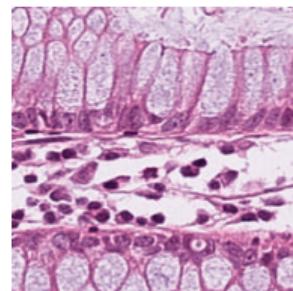
- ✓ Equivariance holds for all training times
- ✓ Equivariance holds away from the training data

- ➊ At infinite width, the mean output at initialization is zero everywhere.
- ⇒ Training with full data augmentation leads to an equivariant function.

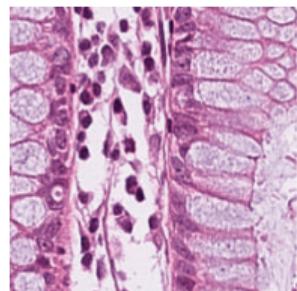
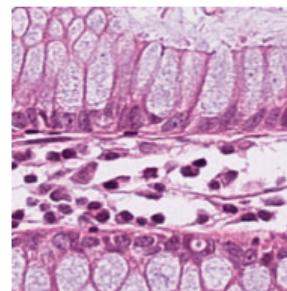
What Does An Augmented Ensemble Converge To?

Rotating images

Rotating images



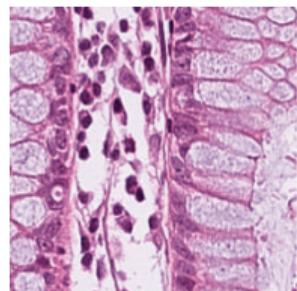
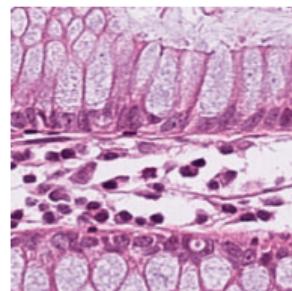
Rotating images



$$f(x)$$

f : pixels \rightarrow colors

Rotating images



$$f(x)$$

$$f(\rho(g^{-1})x)$$

$$f : \text{pixels} \rightarrow \text{colors}$$

$$= [\rho_{\text{reg}}(g)f](x)$$

Data augmentation and NTKs

Data augmentation and NTKs

Consider two ensembles:

trained without data augmentation

trained with data augmentation

Data augmentation and NTKs

Consider two ensembles:

trained without data augmentation

trained with data augmentation

If

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

Data augmentation and NTKs

Consider two ensembles:

trained without data augmentation

trained with data augmentation

If

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

Then

$$\mu_t^{\text{non-aug}}(x) = \mu_t^{\text{aug}}(x)$$

at infinite width.

Data augmentation and NTKs

Consider two ensembles:

trained without data augmentation

trained with data augmentation

If

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

Then

$$\mu_t^{\text{non-aug}}(x) = \mu_t^{\text{aug}}(x) \quad \forall t$$

at infinite width.

Data augmentation and NTKs

Consider two ensembles:

trained without data augmentation

trained with data augmentation

If

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

Then

$$\mu_t^{\text{non-aug}}(x) = \mu_t^{\text{aug}}(x) \quad \forall t \quad \forall x$$

at infinite width.

Data augmentation and NTKs

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

Data augmentation and NTKs

$$\Theta^{\text{non-aug}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{aug}}(f, \rho_{\text{reg}}(g)f')$$

- ① Given an architecture with NTK Θ^{aug} ,
find an architecture with NTK $\Theta^{\text{non-aug}}$

Group convolutions

[Cohen, Welling 2016]

Group convolutions

[Cohen, Welling 2016]

Group conv's are the (unique) linear layers equivariant wrt ρ_{reg}

Group convolutions

[Cohen, Welling 2016]

Group conv's are the (unique) linear layers equivariant wrt ρ_{reg}

- Ordinary convolutions

$$f'(y) = \int_X dx \kappa(x - y) f(x)$$

Group convolutions

[Cohen, Welling 2016]

Group conv's are the (unique) linear layers equivariant wrt ρ_{reg}

- Ordinary convolutions

$$f'(y) = \int_X dx \kappa(x - y) f(x)$$

- Group convolutions

$$f'(g) = \int_X dx \kappa(\rho(g^{-1})x) f(x) \quad \text{lifting}$$

Group convolutions

[Cohen, Welling 2016]

Group conv's are the (unique) linear layers equivariant wrt ρ_{reg}

- Ordinary convolutions

$$f'(y) = \int_X dx \kappa(x - y) f(x)$$

- Group convolutions

$$f'(g) = \int_X dx \kappa(\rho(g^{-1})x) f(x) \quad \text{lifting}$$

$$f'(g) = \int_G dg \kappa(g^{-1}h) f(h) \quad \text{group convolution}$$

Group convolutions

[Cohen, Welling 2016]

Group conv's are the (unique) linear layers equivariant wrt ρ_{reg}

- Ordinary convolutions

$$f'(y) = \int_X dx \kappa(x - y) f(x)$$

- Group convolutions

$$f'(g) = \int_X dx \kappa(\rho(g^{-1})x) f(x) \quad \text{lifting}$$

$$f'(g) = \int_G dg \kappa(g^{-1}h) f(h) \quad \text{group convolution}$$

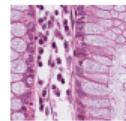
$$f' = \frac{1}{\text{vol}(G)} \int_G dg f(g) \quad \text{group pooling}$$

GCNNs

Stack GConv-layers to obtain an invariant network

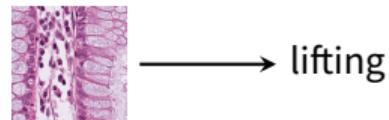
GCNNs

Stack GConv-layers to obtain an invariant network



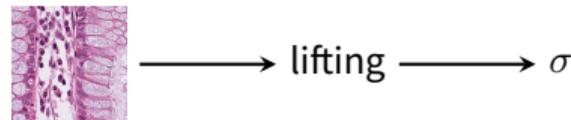
GCNNs

Stack GConv-layers to obtain an invariant network



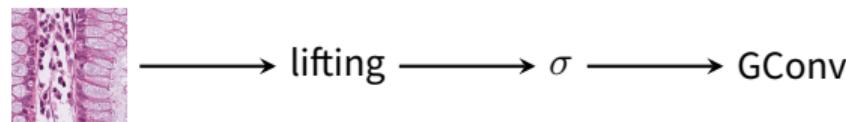
GCNNs

Stack GConv-layers to obtain an invariant network



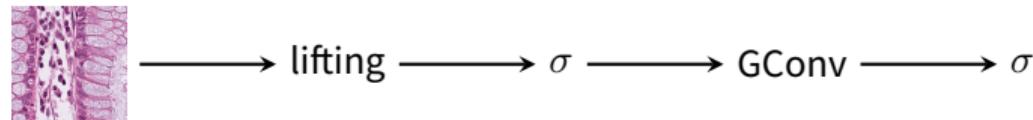
GCNNs

Stack GConv-layers to obtain an invariant network



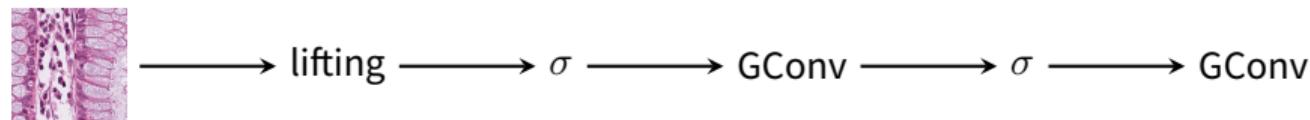
GCNNs

Stack GConv-layers to obtain an invariant network



GCNNs

Stack GConv-layers to obtain an invariant network



GCNNs

Stack GConv-layers to obtain an invariant network

NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

$$K_{\mathbf{g}, \mathbf{g}'}^{(\ell)}(\mathbf{f}, \mathbf{f}') = \mathbb{E} \left[[z^{(\ell)}(\mathbf{f})](\mathbf{g}) \left([z^{(\ell)}(\mathbf{f}')] (\mathbf{g}') \right)^\top \right]$$

NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

$$K_{\mathbf{g}, \mathbf{g}'}^{(\ell)}(\mathbf{f}, \mathbf{f}') = \mathbb{E} \left[[z^{(\ell)}(\mathbf{f})](\mathbf{g}) \left([z^{(\ell)}(\mathbf{f}')](\mathbf{g}') \right)^\top \right]$$

$$\Theta_{\mathbf{g}, \mathbf{g}'}^{(\ell)}(\mathbf{f}, \mathbf{f}') = \mathbb{E} \left[\sum_{\ell'=1}^{\ell} \frac{\partial [z^{(\ell)}(\mathbf{f})](\mathbf{g})}{\partial \theta^{(\ell')}} \left(\frac{\partial [z^{(\ell)}(\mathbf{f}')](\mathbf{g}')}{\partial \theta^{(\ell')}} \right)^\top \right]$$

NTKs for GCNNs

$$[z^{(\ell)}(f)](g) = \int_G dg \kappa(g^{-1}h) [z^{(\ell-1)}(f)](h)$$

The layer-recursion for a GCNN-layer is given by

$$K_{g,g'}^{(\ell+1)}(f, f') = \frac{1}{|S_\kappa|} \int_{S_\kappa} dh K_{gh,g'h}^{(\ell)}(f, f')$$

NTKs for GCNNs

$$[z^{(\ell)}(f)](g) = \int_G dg \kappa(g^{-1}h) [z^{(\ell-1)}(f)](h)$$

The layer-recursion for a GCNN-layer is given by

$$K_{g,g'}^{(\ell+1)}(f, f') = \frac{1}{|S_K|} \int_{S_K} dh K_{gh, g'h}^{(\ell)}(f, f')$$

$$\Theta_{g,g'}^{(\ell+1)}(f, f') = K_{g,g'}^{(\ell+1)}(f, f') + \frac{1}{|S_K|} \int_{S_K} dh \Theta_{gh, g'h}^{(\ell)}(f, f')$$

GCNNs

Stack GConv-layers to obtain an invariant network

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

0

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f, f')$$

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f, f') \longrightarrow \Theta_{g,g'}^{(2)}(f, f')$$

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f,f') \longrightarrow \Theta_{g,g'}^{(2)}(f,f') \longrightarrow \Theta_{g,g'}^{(3)}(f,f')$$

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f,f') \longrightarrow \Theta_{g,g'}^{(2)}(f,f') \longrightarrow \Theta_{g,g'}^{(3)}(f,f') \longrightarrow \Theta_{g,g'}^{(4)}(f,f')$$

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f, f') \longrightarrow \Theta_{g,g'}^{(2)}(f, f') \longrightarrow \Theta_{g,g'}^{(3)}(f, f') \longrightarrow \Theta_{g,g'}^{(4)}(f, f') \longrightarrow \Theta_{g,g'}^{(5)}(f, f')$$

NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

Compute NTK with layer-wise recursion

$$0 \longrightarrow \Theta_{g,g'}^{(1)}(f,f') \longrightarrow \Theta_{g,g'}^{(2)}(f,f') \longrightarrow \Theta_{g,g'}^{(3)}(f,f') \longrightarrow \Theta_{g,g'}^{(4)}(f,f') \longrightarrow \Theta_{g,g'}^{(5)}(f,f') \longrightarrow \Theta(f,f')$$

NTKs of MLPs and GCNNs

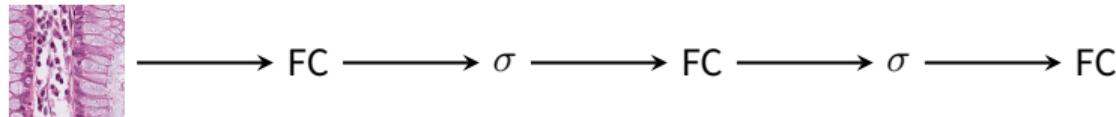
NTKs of MLPs and GCNNs

- Consider two neural networks

NTKs of MLPs and GCNNs

- Consider two neural networks

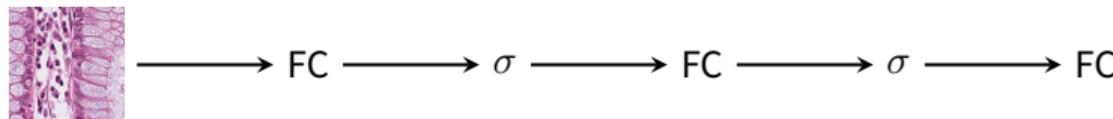
An MLP



NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



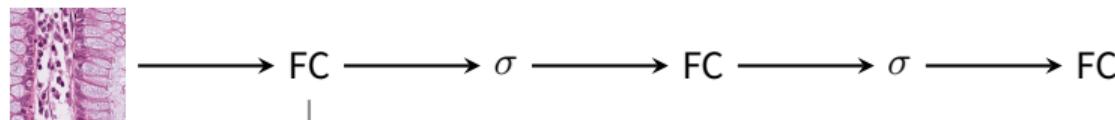
A GCNN



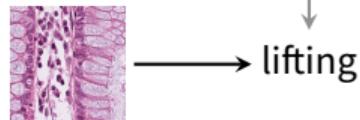
NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



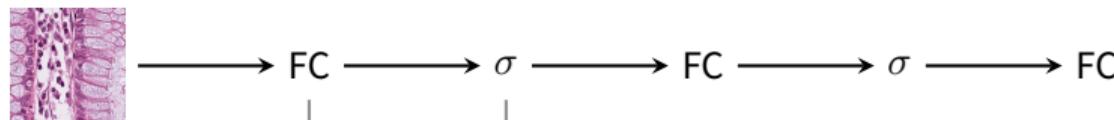
A GCNN



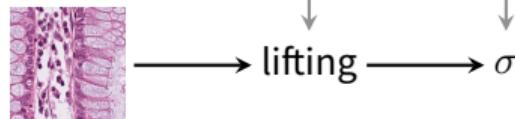
NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



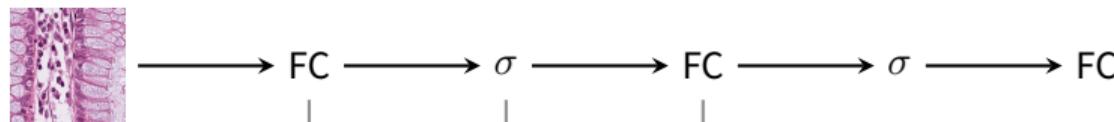
A GCNN



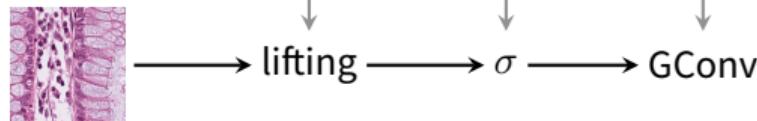
NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



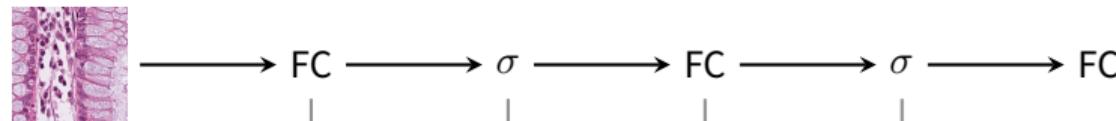
A GCNN



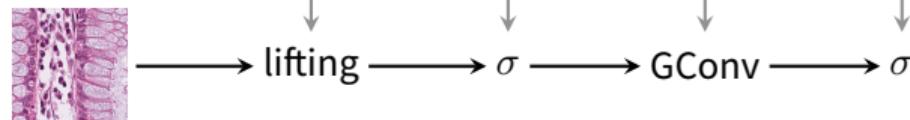
NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



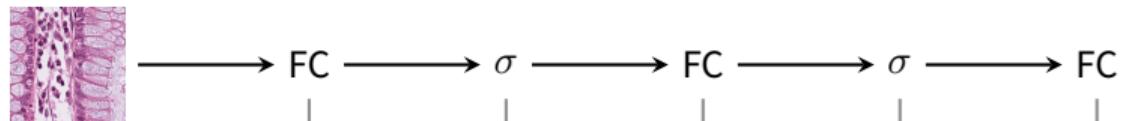
A GCNN



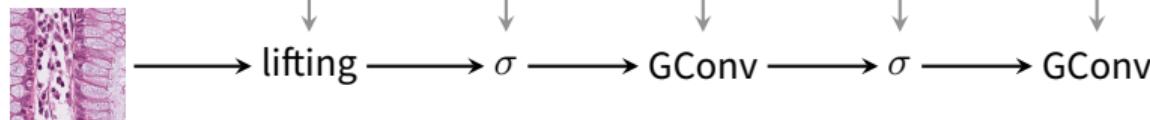
NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



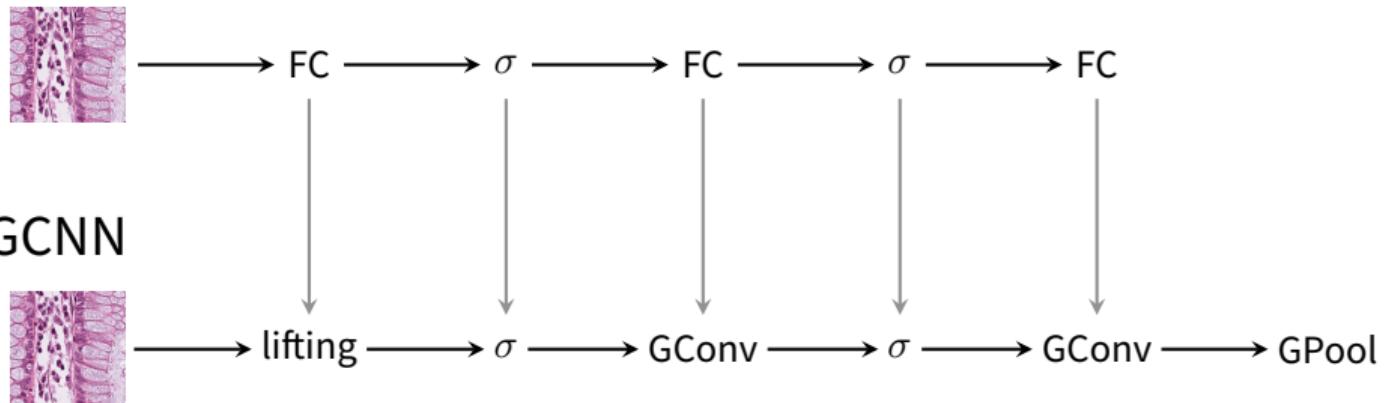
A GCNN



NTKs of MLPs and GCNNs

- Consider two neural networks

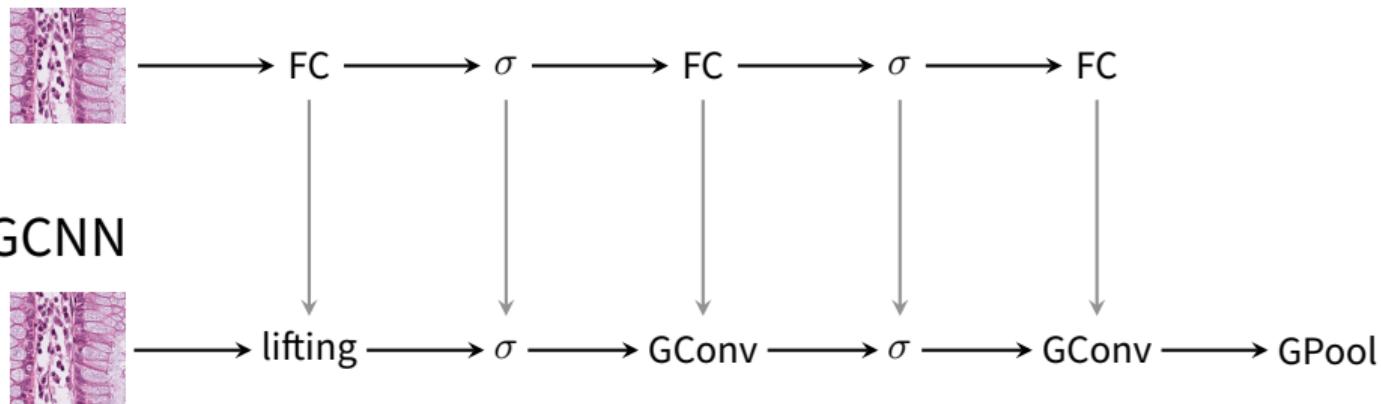
An MLP



NTKs of MLPs and GCNNs

- Consider two neural networks

An MLP



- Then

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

Data augmentation of MLPs

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

Data augmentation of MLPs

before: non-aug

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

Data augmentation of MLPs

before: non-aug

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

before: aug

Data augmentation of MLPs

before: non-aug

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

before: aug

⇒ training the MLP on
G-augmented data

Data augmentation of MLPs

before: non-aug

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

before: aug

⇒ training the MLP on G -augmented data = training the GCNN on unaugmented data

Data augmentation of MLPs

before: non-aug

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{|G|} \sum_{g \in G} \Theta^{\text{MLP}}(f, \rho_{\text{reg}}(g)f')$$

before: aug

⇒ training the MLP on
G-augmented data

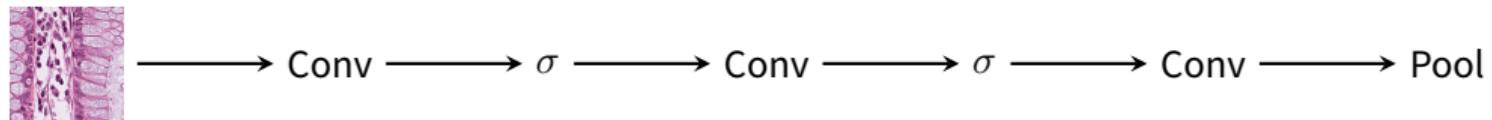
= training the GCNN on
unaugmented data

in the ensemble mean, $\forall t, \forall x$

Data augmentation of CNNs

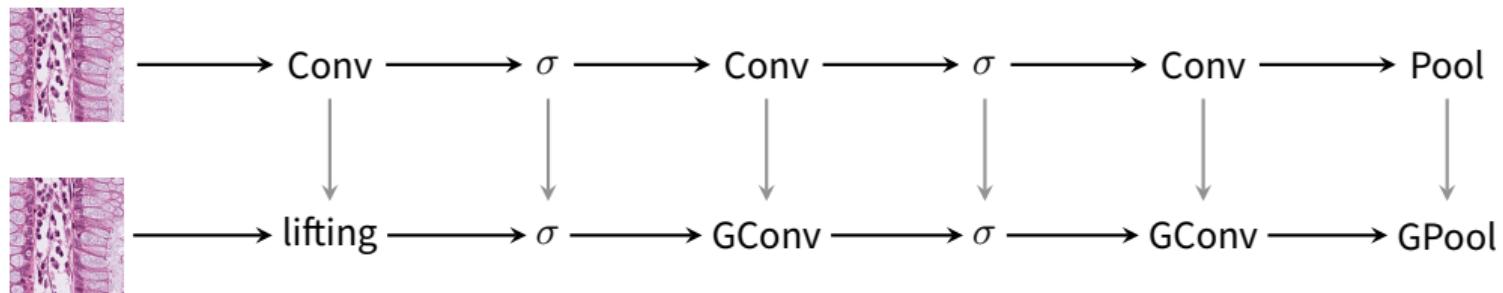
Data augmentation of CNNs

- Consider a CNN



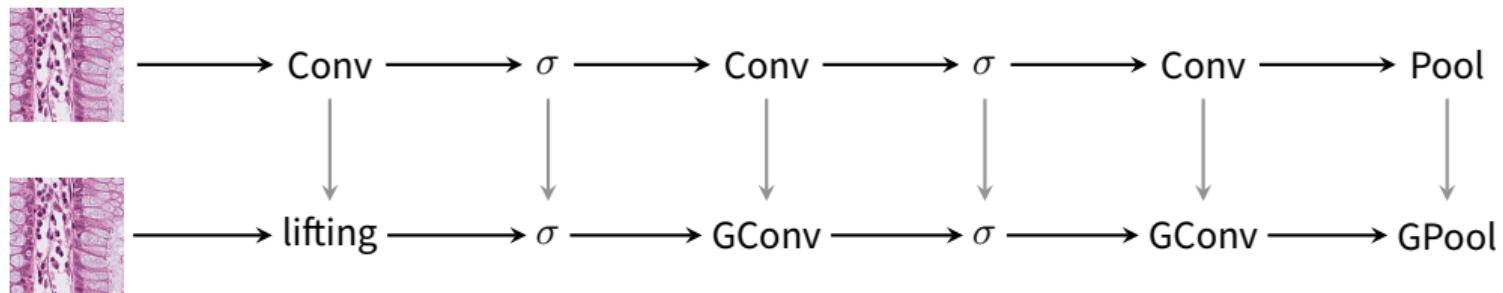
Data augmentation of CNNs

- Consider a CNN and a GCNN invariant wrt. roto-translations



Data augmentation of CNNs

- Consider a CNN and a GCNN invariant wrt. roto-translations

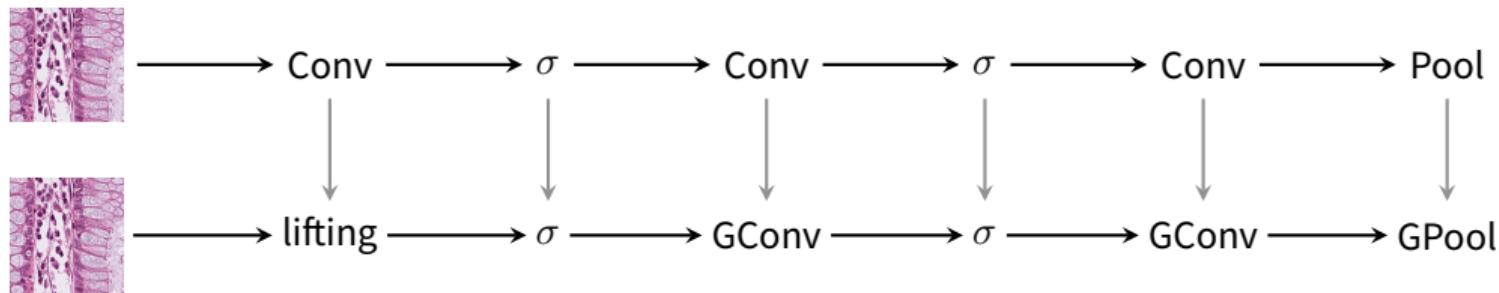


- Then

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{n} \sum_{r \in C_n} \Theta^{\text{CNN}}(f, \rho_{\text{reg}}(r)f')$$

Data augmentation of CNNs

- Consider a CNN and a GCNN invariant wrt. roto-translations



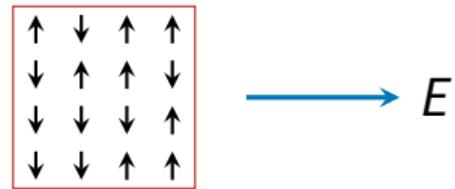
- Then

$$\Theta^{\text{GCNN}}(f, f') = \frac{1}{n} \sum_{r \in C_n} \Theta^{\text{CNN}}(f, \rho_{\text{reg}}(r)f')$$

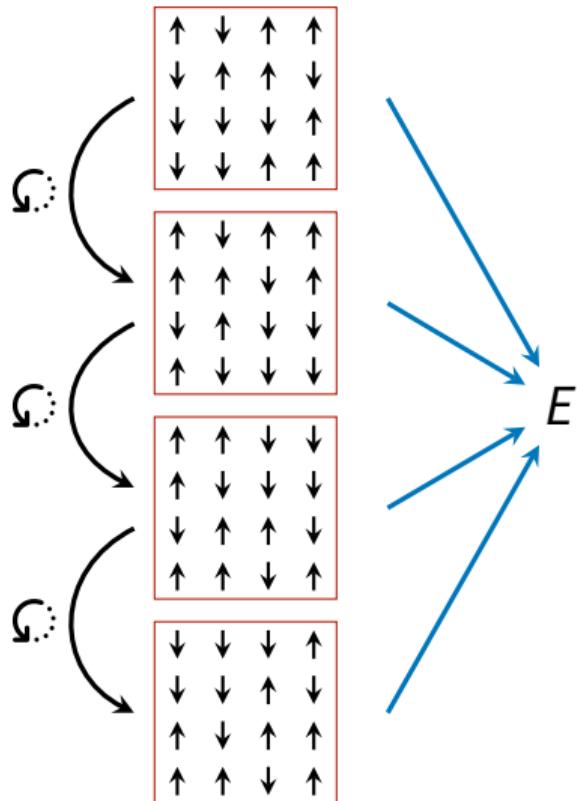
⇒ By training the CNN on rotated images, one obtains a roto-translation invariant GCNN

Experiments

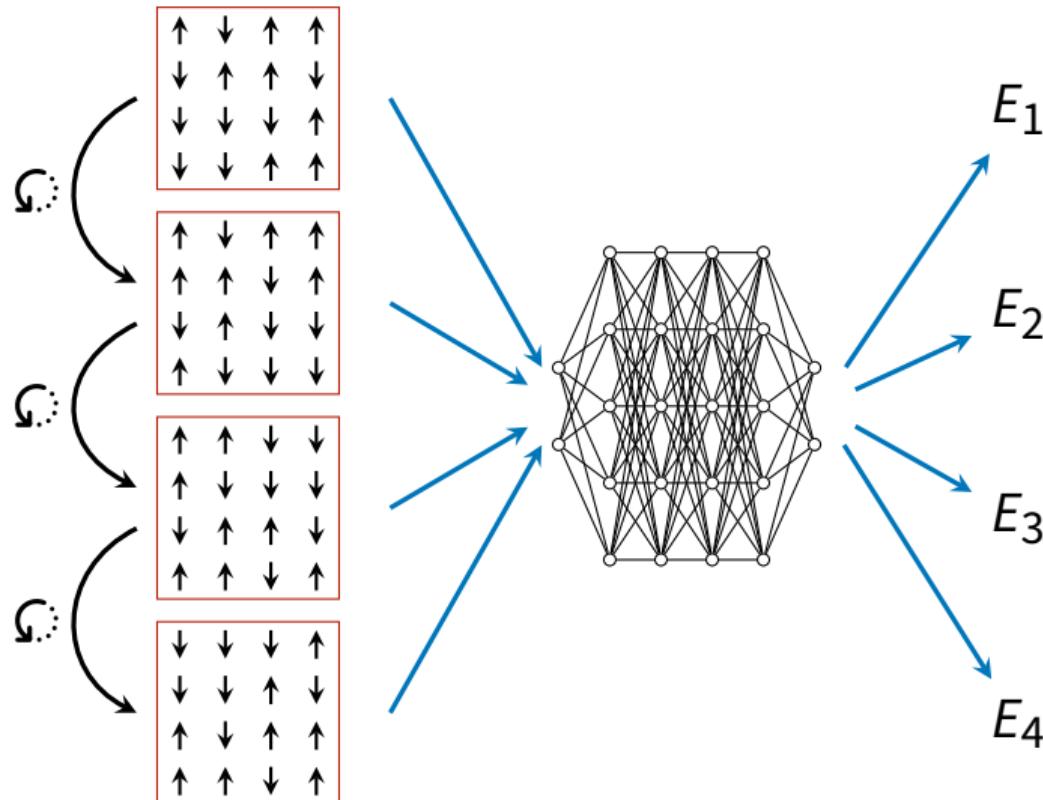
Ising model



Ising model

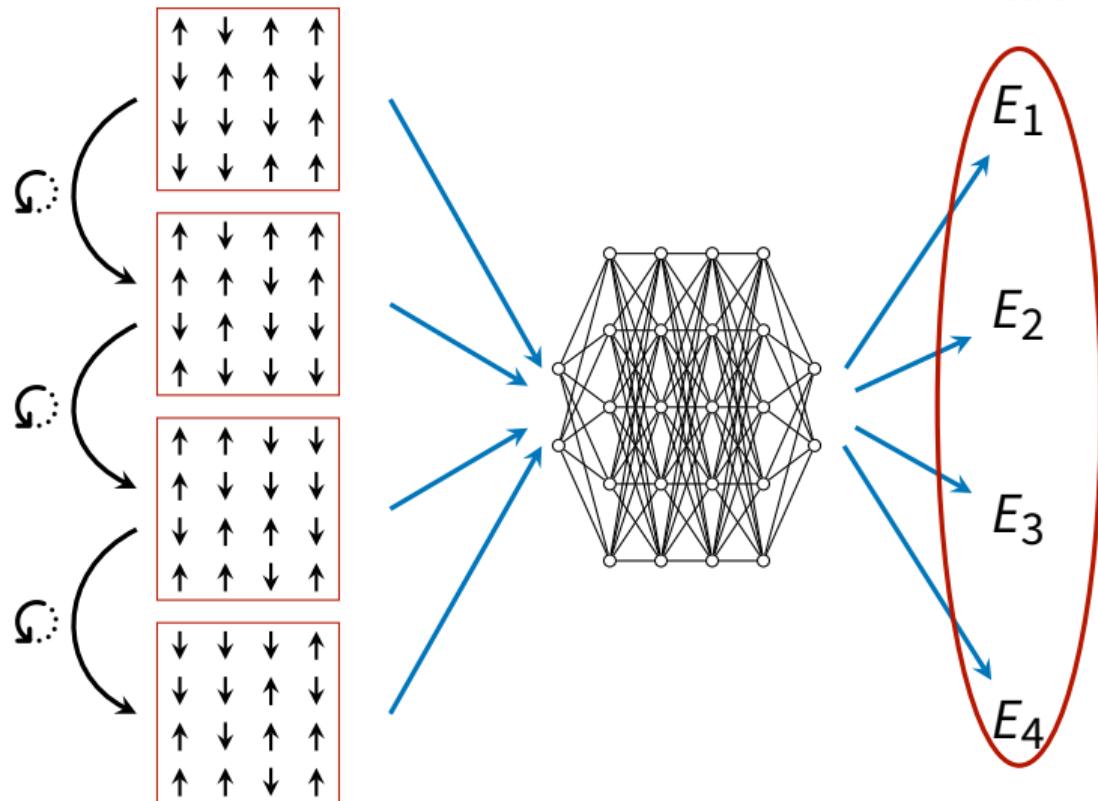


Ising model

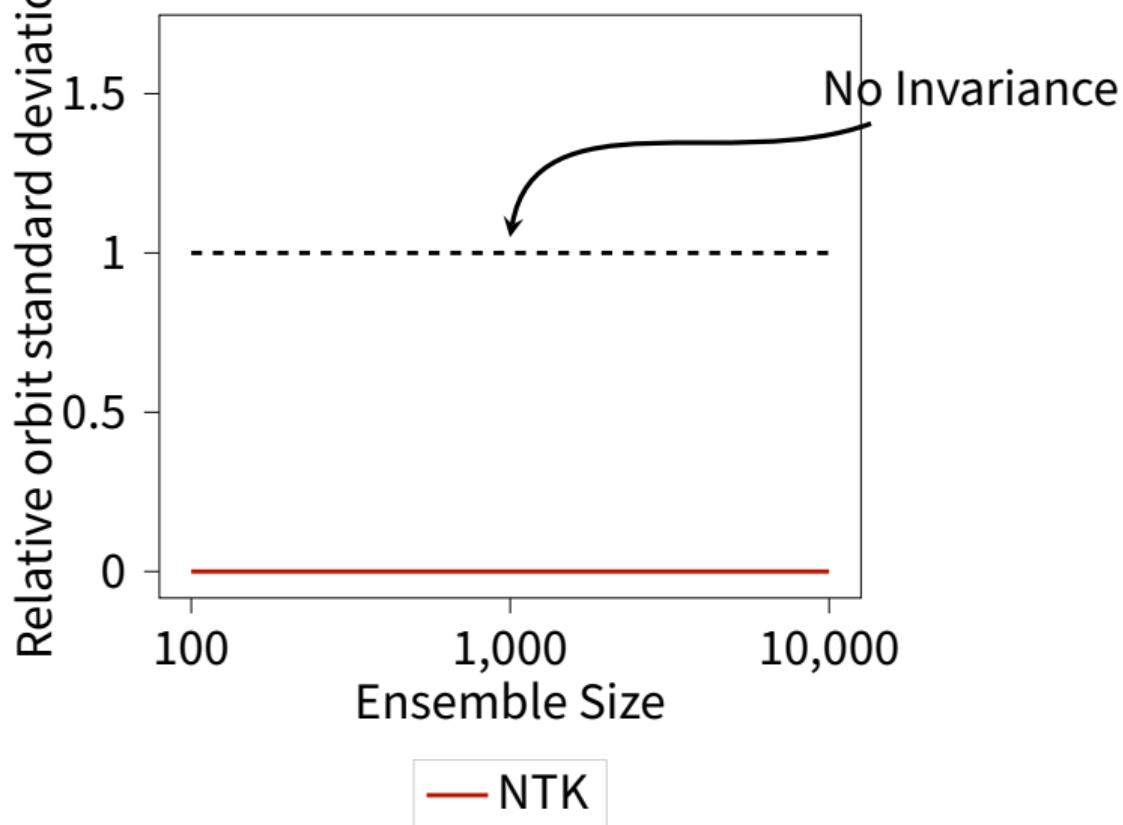


Ising model

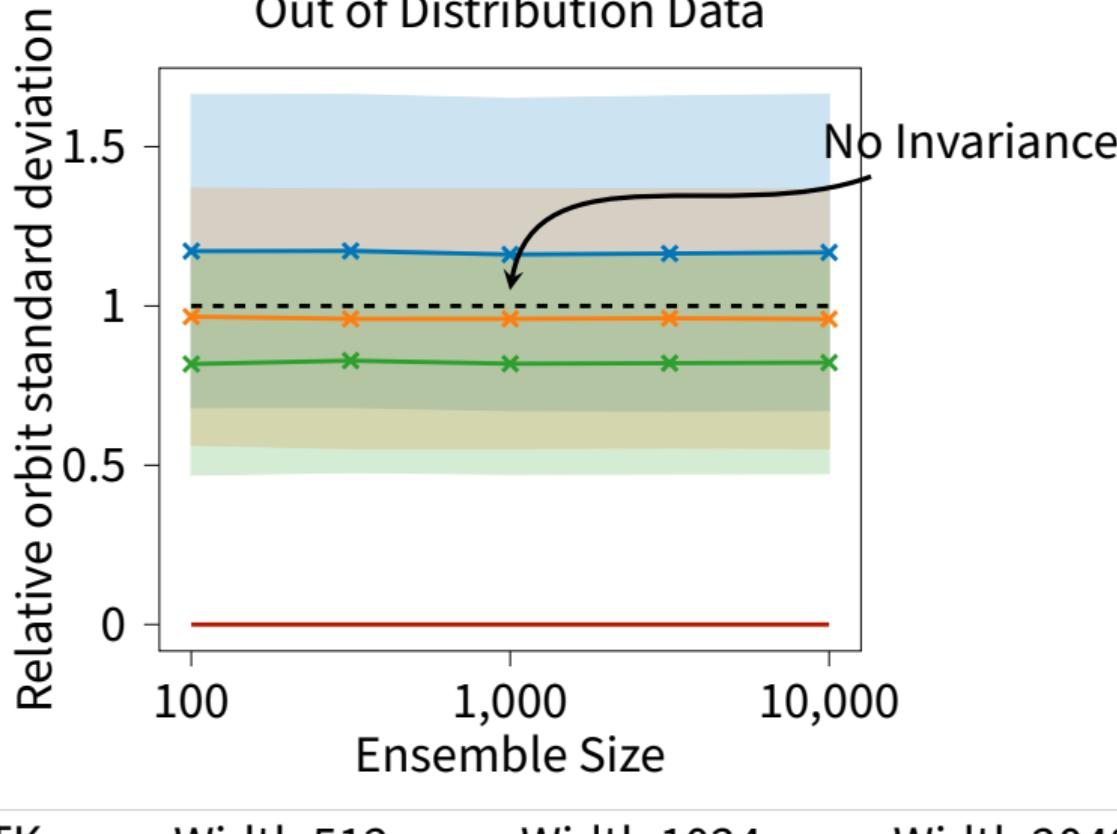
Relative Standard Deviation



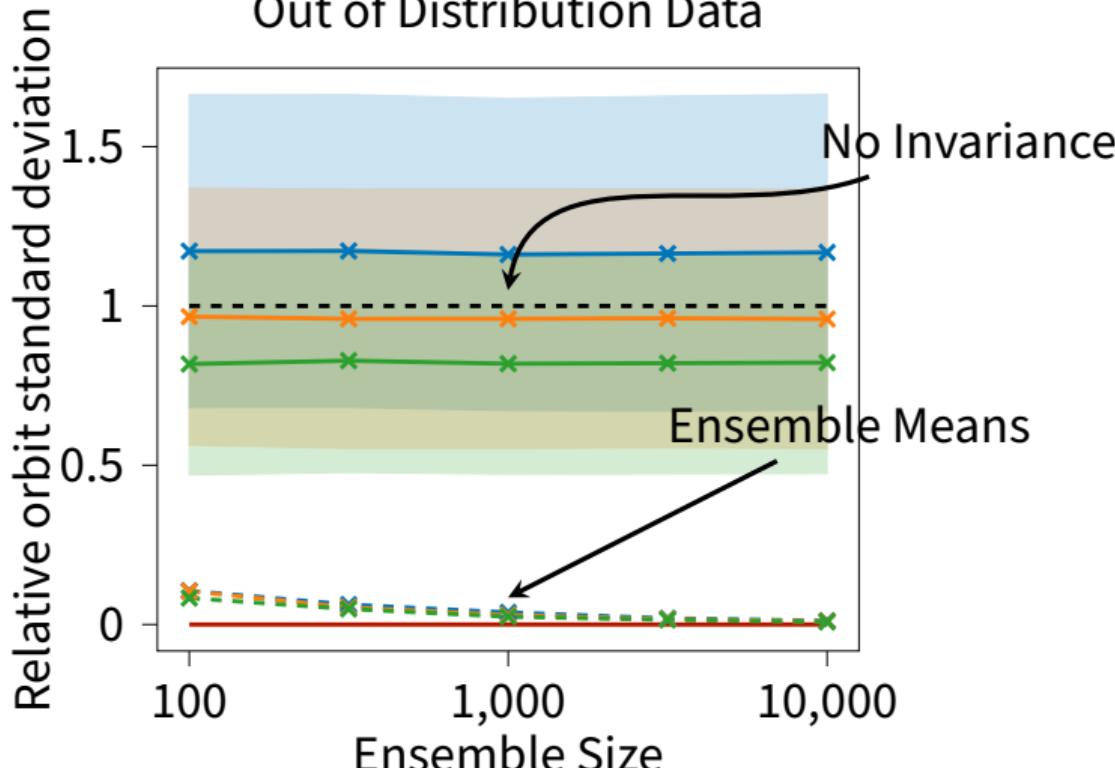
Out of Distribution Data



Out of Distribution Data

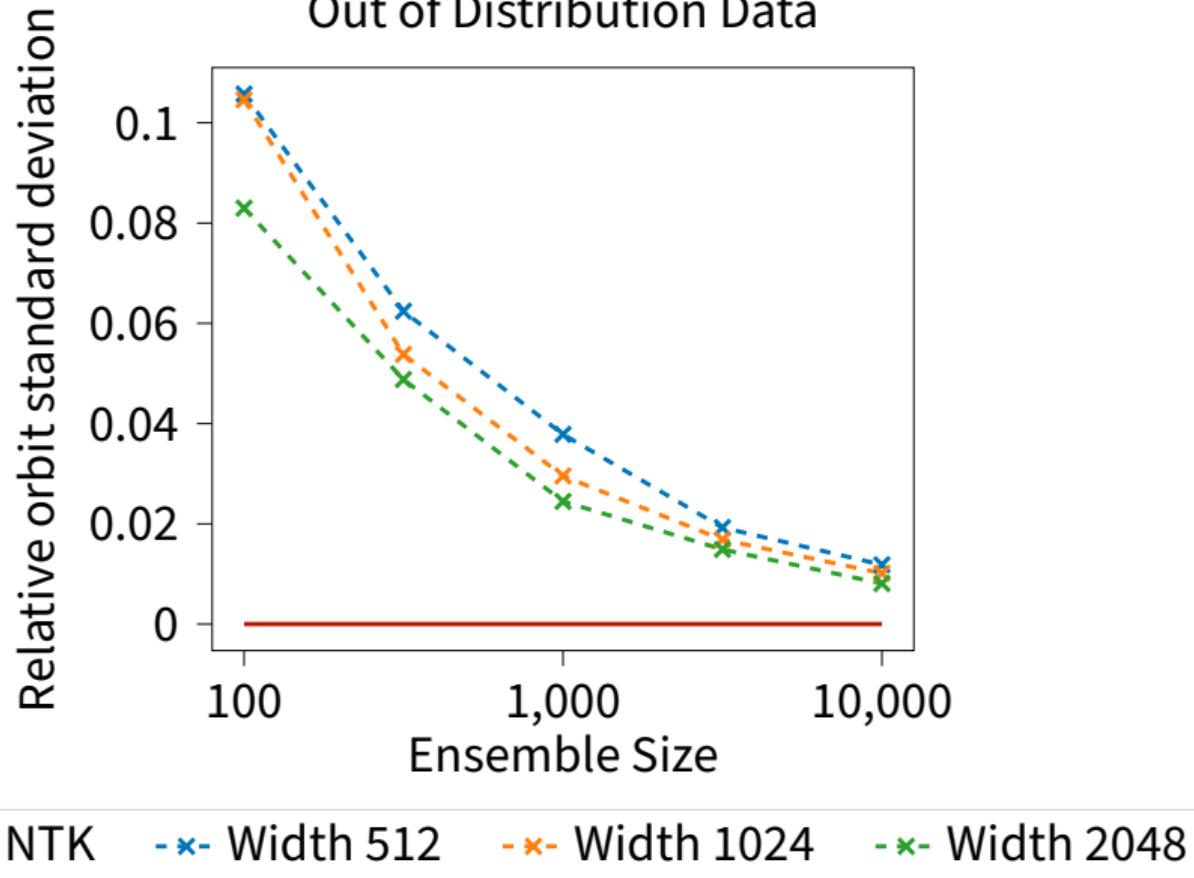


Out of Distribution Data



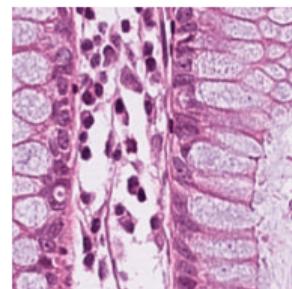
— NTK * Width 512 * Width 1024 * Width 2048

Out of Distribution Data



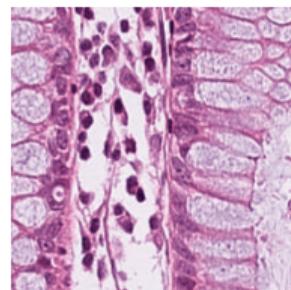
Histological slices

[Kather et al. 2018]



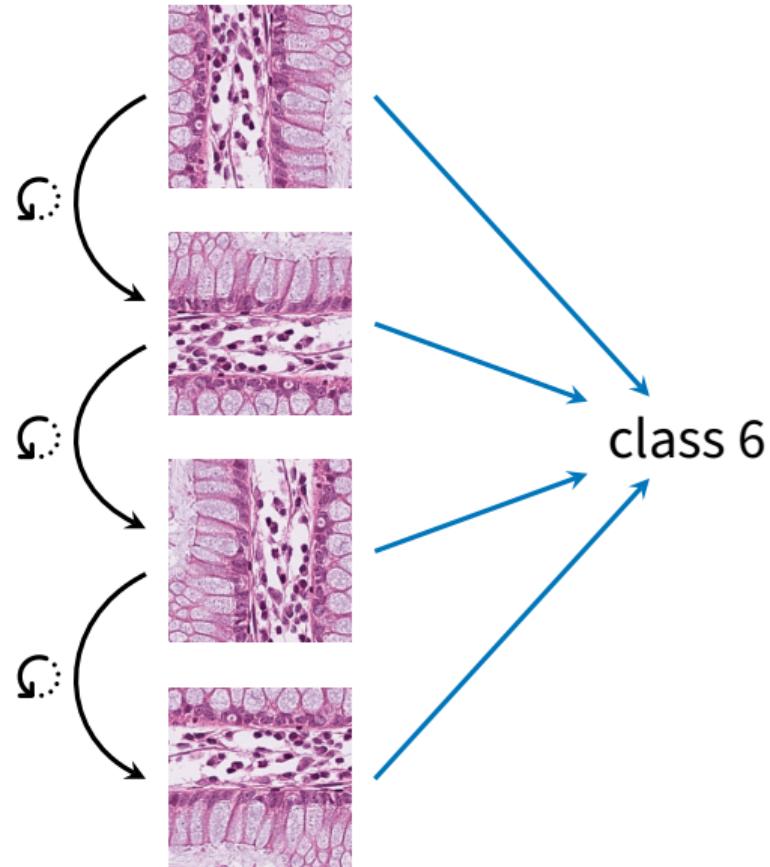
Histological slices

[Kather et al. 2018]

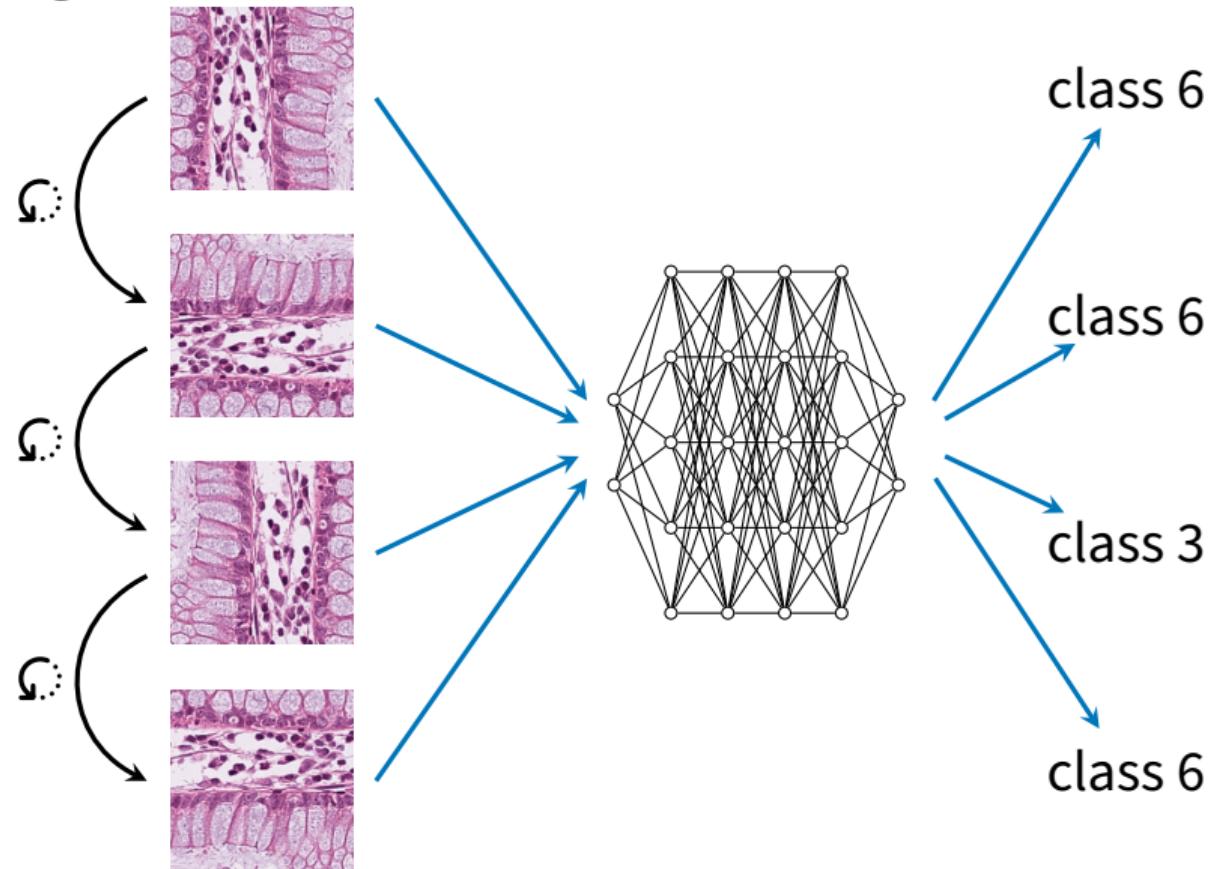


class 6

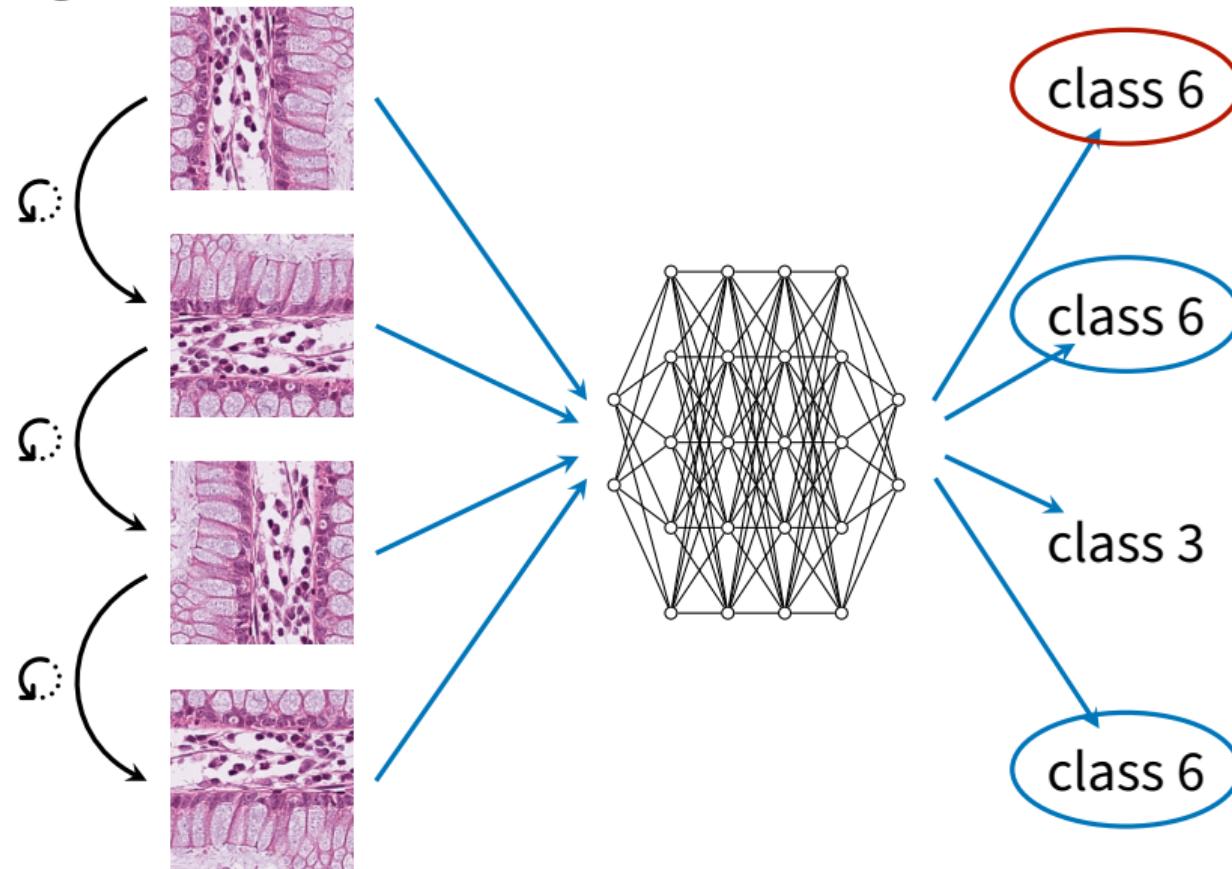
Histological slices



Histological slices

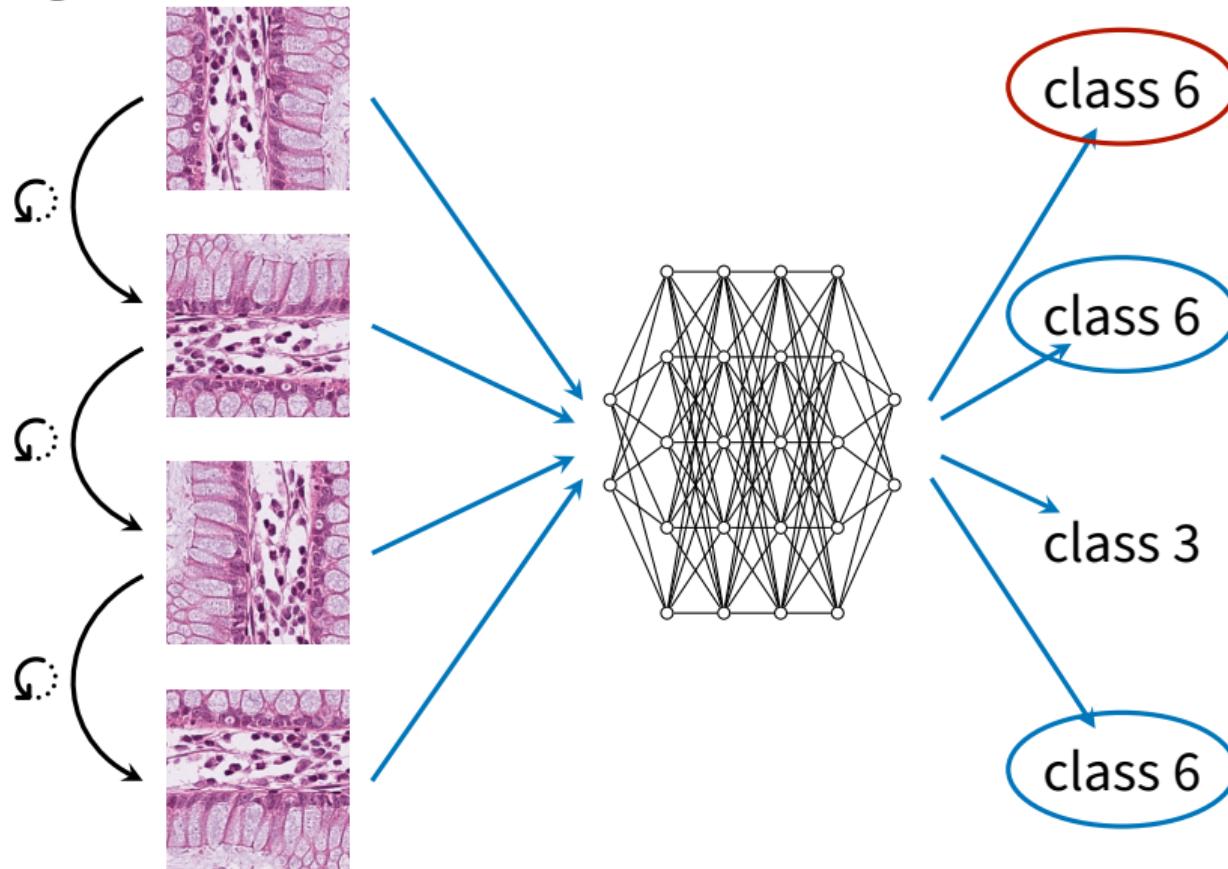


Histological slices

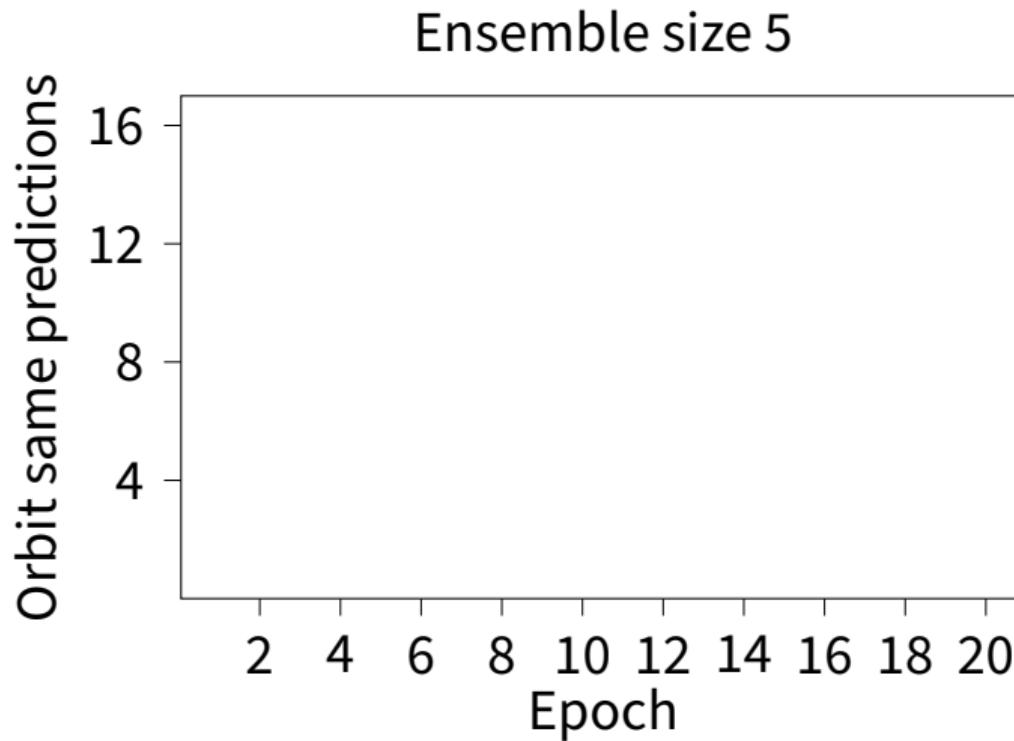


Histological slices

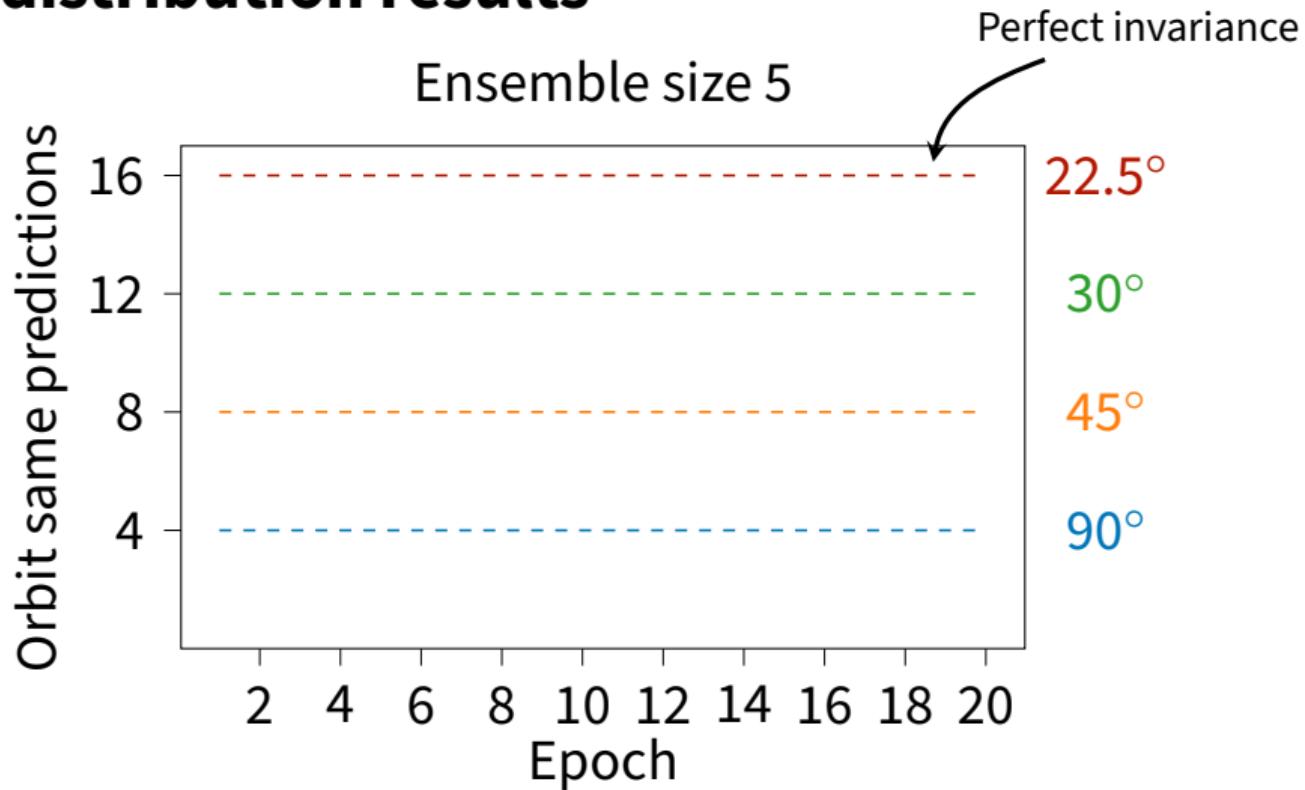
Orbit Same Predictions = 3



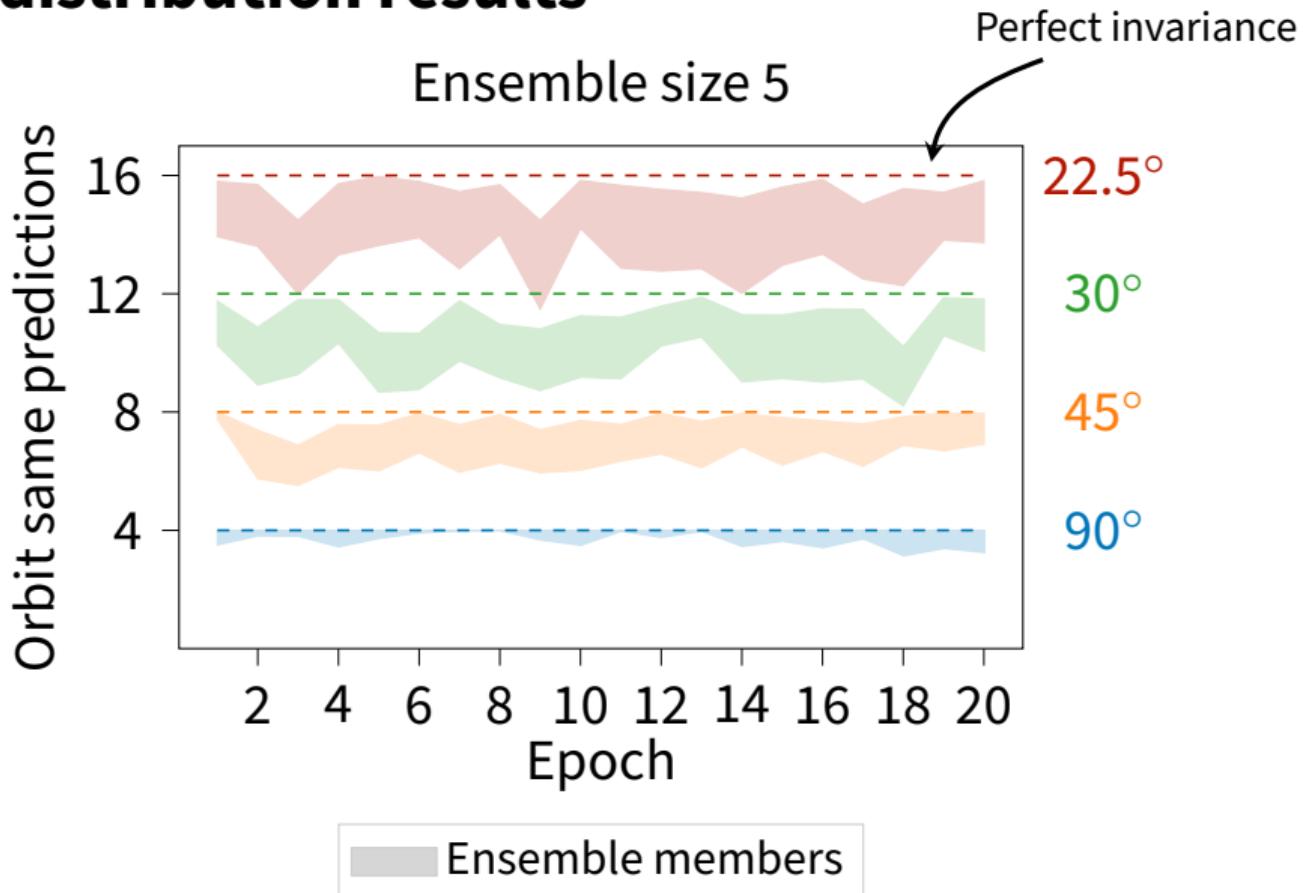
Out of distribution results



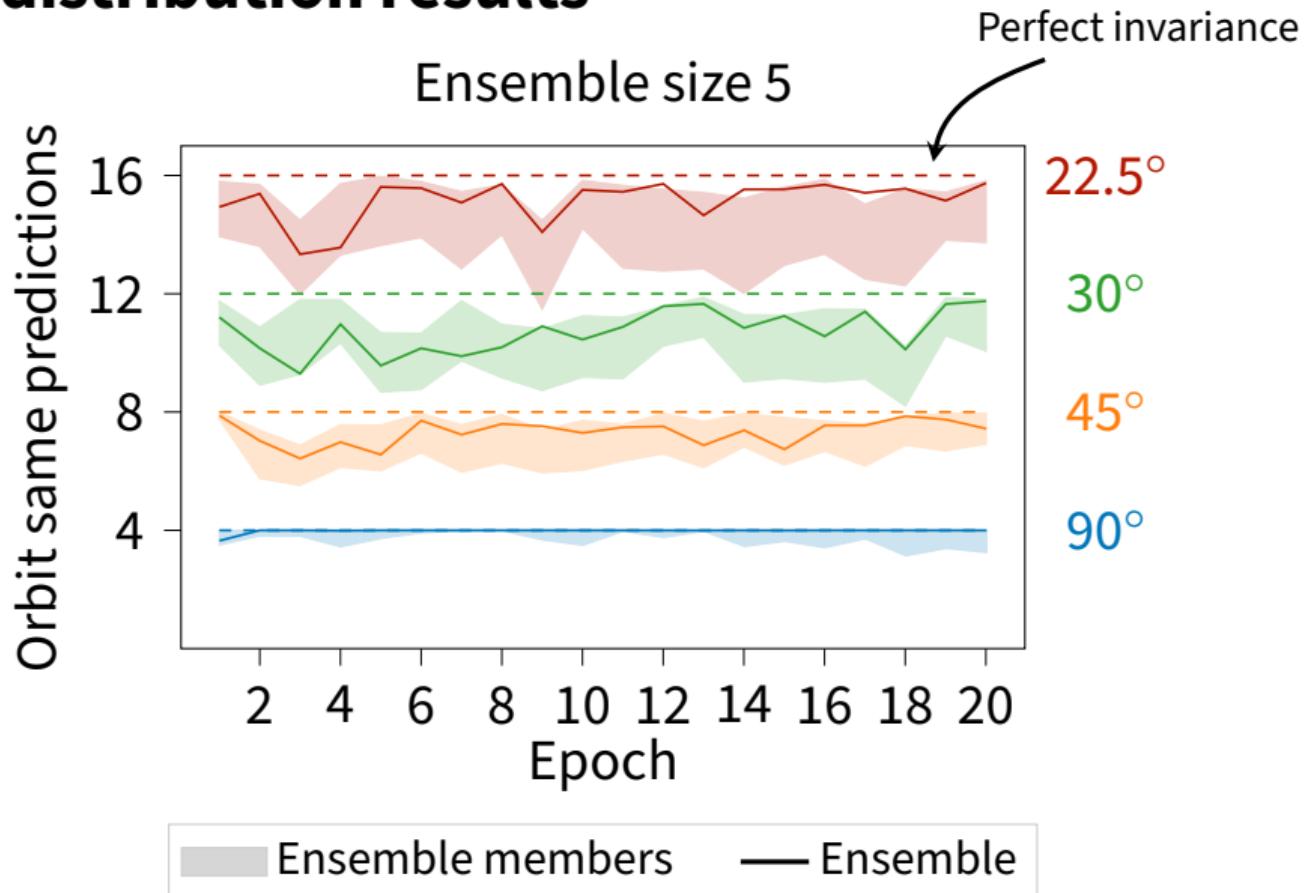
Out of distribution results



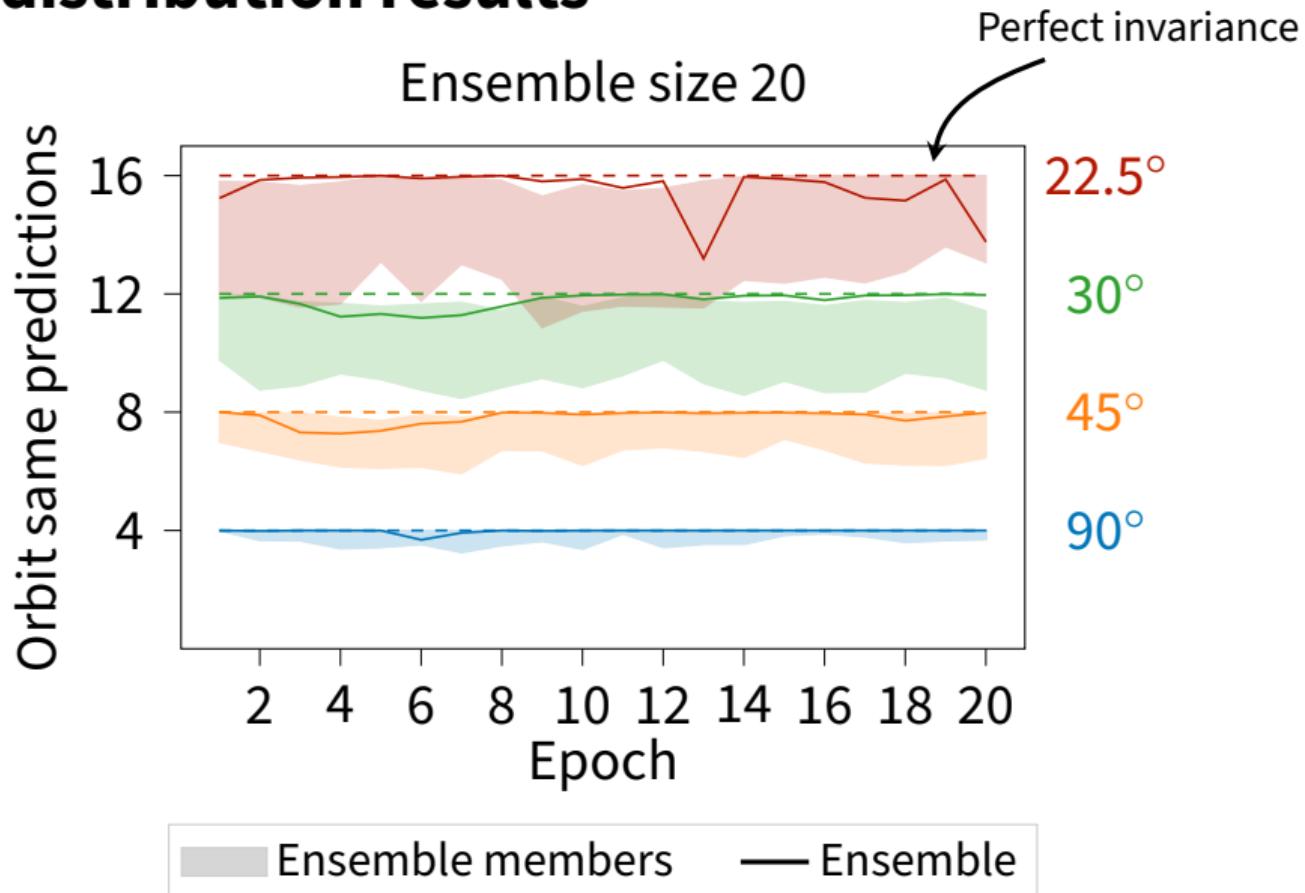
Out of distribution results



Out of distribution results



Out of distribution results



Further experimental results

Further experimental results

- ✓ Emergent invariance for rotated FashionMNIST

Further experimental results

- ✓ Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries

Further experimental results

- ✓ Emergent invariance for rotated FashionMNIST
- ✓ Partial augmentation for continuous symmetries
- ✓ Emergent equivariance (as opposed to invariance)

Comparison to other methods

Comparison to other methods

- ⇒ Models trained on rotated FashionMNIST

Comparison to other methods

⇒ Models trained on rotated FashionMNIST

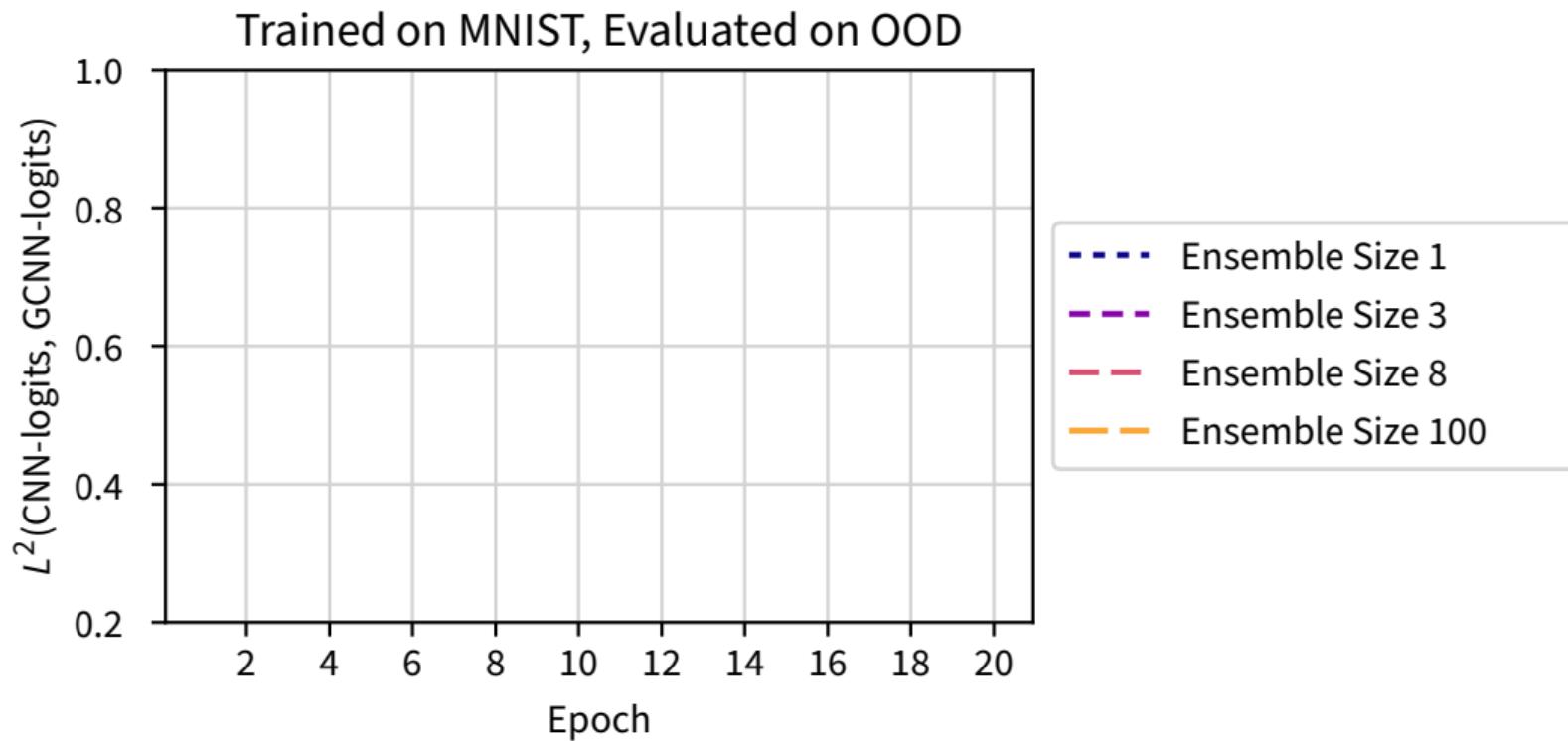
Orbit same predictions out of distribution:

	C_4	C_8	C_{16}
DeepEns+DA	3.85 ± 0.12	7.72 ± 0.34	15.24 ± 0.69
only DA	3.41 ± 0.18	6.73 ± 0.24	12.77 ± 0.71
E2CNN ¹	4 ± 0.0	7.71 ± 0.21	15.08 ± 0.34
Canon ²	4 ± 0.0	7.45 ± 0.14	12.41 ± 0.85

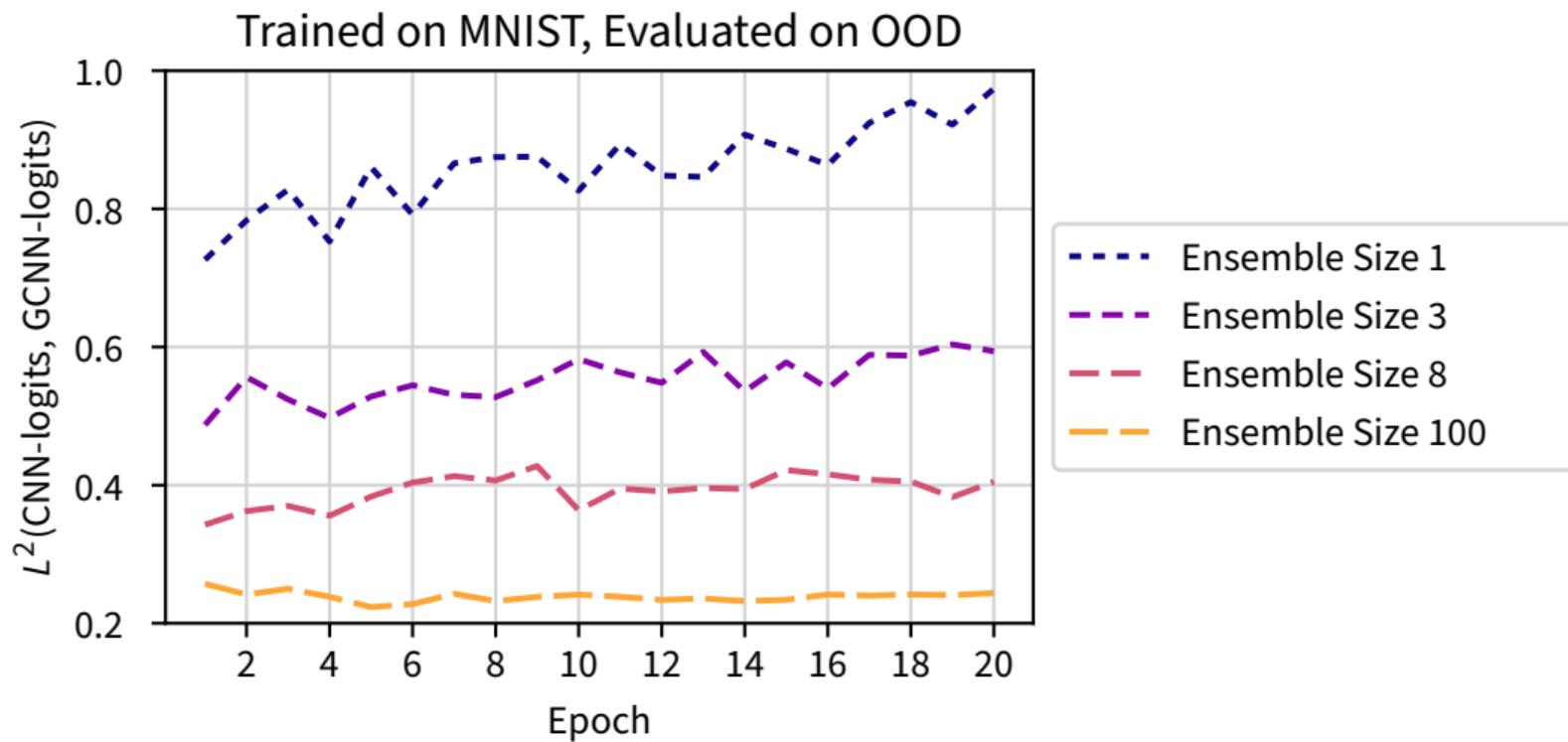
¹[Weiler et al. 2019], ²[Kaba et al. 2022]

Convergence of augmented CNNs to GCNNs

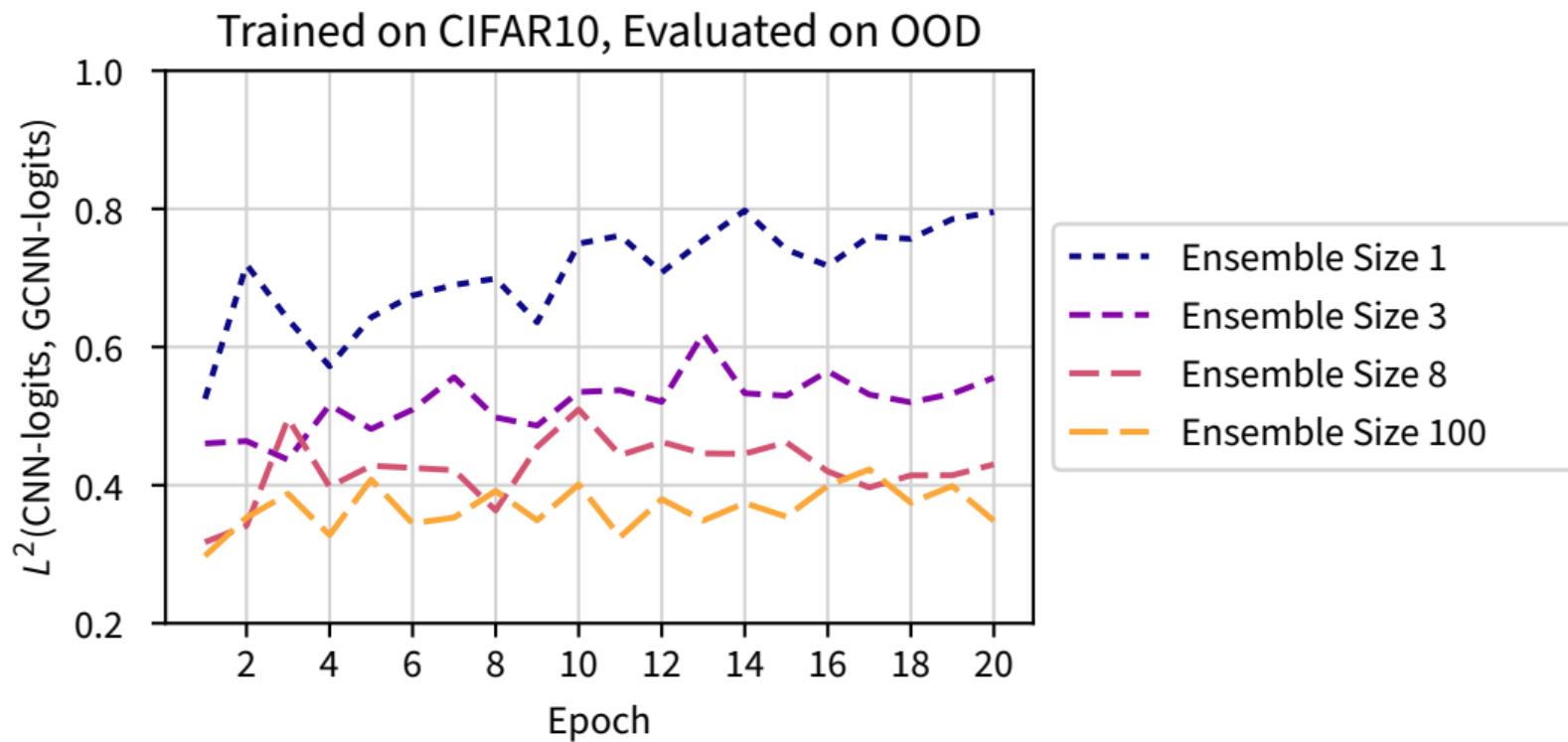
Convergence of augmented CNNs to GCNNs



Convergence of augmented CNNs to GCNNs



Convergence of augmented CNNs to GCNNs



Finite-width from Feynman diagrams

Restrictions of the infinite-width limit

The infinite-width limit...

- thumb-up Yields compact expressions
- thumb-up Is under complete analytic control

Restrictions of the infinite-width limit

The infinite-width limit...

- 👍 Yields compact expressions
- 👍 Is under complete analytic control
- 👎 Only Gaussian distributions
- 👎 Linearization of the model in the parameters
- 👎 No feature learning

Restrictions of the infinite-width limit

The infinite-width limit...

- 👍 Yields compact expressions
- 👍 Is under complete analytic control
- 👎 Only Gaussian distributions
- 👎 Linearization of the model in the parameters
- 👎 No feature learning

① Use methods from physics to compute finite-width effects

Field theory

- In field theory, consider probability distribution over fields (functions)
- Typically: Gaussian probability distributions with small corrections

Field theory

- In field theory, consider probability distribution over fields (functions)
- Typically: Gaussian probability distributions with small corrections
- The Gaussian limit corresponds to **free fields**
- Corrections correspond to interactions between fields

Field theory

- In field theory, consider probability distribution over fields (functions)
- Typically: Gaussian probability distributions with small corrections
- The Gaussian limit corresponds to **free fields**
- Corrections correspond to interactions between fields
- Compute statistics of these fields

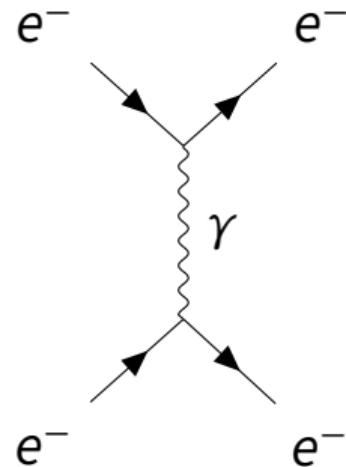
Feynman diagrams

Feynman diagrams are used to compute statistics

Feynman diagrams

Feynman diagrams are used to compute statistics

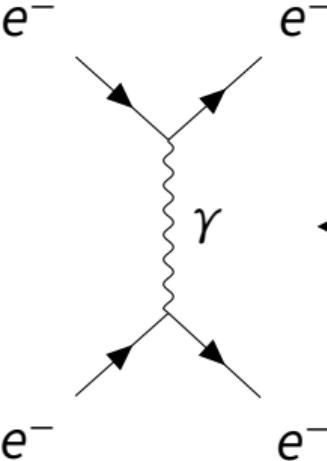
E.g. Electron-electron scattering



Feynman diagrams

Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering



A Feynman diagram for electron-electron scattering. It shows two incoming electrons, labeled e^- , represented by arrows pointing towards each other. They interact via a virtual photon, labeled γ , represented by a wavy line. The outgoing particles are also two electrons, labeled e^- , represented by arrows pointing away from each other.

$$-ie^2 \frac{[\bar{u}(p_3)\gamma^\mu u(p_1)][\bar{u}(p_4)\gamma_\mu u(p_2)]}{(p_1 - p_3)^2}$$

Non-Gaussian Corrections from Physics

- Taylor-expand network statistics in $1/\text{width}$
- Use Feynman diagrams to compute non-Gaussian corrections

Non-Gaussian Corrections from Physics

- Taylor-expand network statistics in 1/width
- Use Feynman diagrams to compute non-Gaussian corrections

Neural Networks	Field Theory
infinite width	no interactions
Gaussian distribution	free fields
finite-width	interactions

Tensors for neural network statistics

[Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at initialization, e.g.

Tensors for neural network statistics

[Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at initialization, e.g.

$$\mathbb{E}_{\theta}^c[z_{i_1}^{(\ell)}(x_1), z_{i_2}^{(\ell)}(x_2), \widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)]$$

Tensors for neural network statistics

[Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at initialization, e.g.

$$\mathbb{E}_{\theta}^c[z_{i_1}^{(\ell)}(x_1), z_{i_2}^{(\ell)}(x_2), \widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)]$$

Annotations:

- "cumulant" points to the first term $z_{i_1}^{(\ell)}(x_1)$
- "preactivation" points to the second term $z_{i_2}^{(\ell)}(x_2)$
- "NTK fluctuation, $\widehat{\Delta\Theta}^{(\ell)} = \widehat{\Theta}^{(\ell)} - \mathbb{E}_{\theta}[\widehat{\Theta}^{(\ell)}]$ " points to the third term $\widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)$

Tensors for neural network statistics

[Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at initialization, e.g.

$$\mathbb{E}_{\theta}^c[z_{i_1}^{(\ell)}(x_1), z_{i_2}^{(\ell)}(x_2), \widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)]$$

Annotations:

- cumulant: points to \mathbb{E}_{θ}^c
- preactivation: points to $z_{i_1}^{(\ell)}(x_1)$ and $z_{i_2}^{(\ell)}(x_2)$
- NTK fluctuation, $\widehat{\Delta\Theta}^{(\ell)} = \widehat{\Theta}^{(\ell)} - \mathbb{E}_{\theta}[\widehat{\Theta}^{(\ell)}]$: points to $\widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)$

Decompose these into tensors

$$= \frac{1}{n} \left(D_{1234}^{(\ell)} \delta_{i_1 i_2} \delta_{i_3 i_4} + F_{1324}^{(\ell)} \delta_{i_1 i_3} \delta_{i_2 i_4} + F_{1423}^{(\ell)} \delta_{i_1 i_4} \delta_{i_2 i_3} \right)$$

Tensors for neural network statistics

[Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at initialization, e.g.

$$\mathbb{E}_{\theta}^c[z_{i_1}^{(\ell)}(x_1), z_{i_2}^{(\ell)}(x_2), \widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)]$$

Annotations:

- cumulant: points to \mathbb{E}_{θ}^c
- preactivation: points to $z_{i_1}^{(\ell)}(x_1)$ and $z_{i_2}^{(\ell)}(x_2)$
- NTK fluctuation, $\widehat{\Delta\Theta}^{(\ell)} = \widehat{\Theta}^{(\ell)} - \mathbb{E}_{\theta}[\widehat{\Theta}^{(\ell)}]$: points to $\widehat{\Delta\Theta}_{i_3 i_4}^{(\ell)}(x_3, x_4)$

Decompose these into tensors

$$= \frac{1}{n} \left(D_{1234}^{(\ell)} \delta_{i_1 i_2} \delta_{i_3 i_4} + F_{1324}^{(\ell)} \delta_{i_1 i_3} \delta_{i_2 i_4} + F_{1423}^{(\ell)} \delta_{i_1 i_4} \delta_{i_2 i_3} \right)$$

Annotations:

- Gram tensor, $F_{1324}^{(\ell)} = F^{(\ell)}(x_1, x_3, x_2, x_4)$: points to $F_{1324}^{(\ell)}$

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

At order $1/n$, we have

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

At order $1/n$, we have

- $K, K^{\{1\}}$ and V_4 for preactivations

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

At order $1/n$, we have

- $K, K^{\{1\}}$ and V_4 for preactivations
- $\Theta, \Theta^{\{1\}}, A$ and B for derivatives

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

At order $1/n$, we have

- $K, K^{\{1\}}$ and V_4 for preactivations
- $\Theta, \Theta^{\{1\}}, A$ and B for derivatives
- D and F for mixed statistics

Tensors for neural network statistics

[Roberts, Yaida 2022]

⇒ Keeping track of these tensors is sufficient.

At order $1/n$, we have

- $K, K^{\{1\}}$ and V_4 for preactivations
- $\Theta, \Theta^{\{1\}}, A$ and B for derivatives
- D and F for mixed statistics
- 6 more for higher derivatives, needed for training

Tensor recursions

For each tensor, there is a layer-wise recursion relation, e.g.

Tensor recursions

For each tensor, there is a layer-wise recursion relation, e.g.

$$F_{1324}^{(\ell+1)} = \langle \sigma_1^{(\ell)} \sigma_2^{(\ell)} \sigma_3'^{(\ell)} \sigma_4'^{(\ell)} \rangle_{K^{(\ell)}} \Theta_{34}^{(\ell)} + \sum_{\alpha, \beta, \gamma, \delta=1}^4 \langle \sigma_1^{(\ell)} \sigma_3'^{(\ell)} z_\alpha^{(\ell)} \rangle_{K^{(\ell)}} \langle \sigma_2^{(\ell)} \sigma_4'^{(\ell)} z_\beta^{(\ell)} \rangle_{K^{(\ell)}} K_{(\ell)}^{\alpha \gamma} K_{(\ell)}^{\beta \delta} F_{\gamma 3 \delta 4}^{(\ell)}$$

Tensor recursions

For each tensor, there is a layer-wise recursion relation, e.g.

$$F_{1324}^{(\ell+1)} = \langle \sigma_1^{(\ell)} \sigma_2^{(\ell)} \sigma_3'^{(\ell)} \sigma_4'^{(\ell)} \rangle_{K^{(\ell)}} \Theta_{34}^{(\ell)}$$

Gaussian expectation with cov. $K^{(\ell)}$

$$+ \sum_{\alpha, \beta, \gamma, \delta=1}^4 \langle \sigma_1^{(\ell)} \sigma_3'^{(\ell)} z_\alpha^{(\ell)} \rangle_{K^{(\ell)}} \langle \sigma_2^{(\ell)} \sigma_4'^{(\ell)} z_\beta^{(\ell)} \rangle_{K^{(\ell)}} K_{(\ell)}^{\alpha \gamma} K_{(\ell)}^{\beta \delta} F_{\gamma 3 \delta 4}^{(\ell)}$$

Components of $(K^{(\ell)})^{-1}$

Tensor recursions

For each tensor, there is a layer-wise recursion relation, e.g.

$$F_{1324}^{(\ell+1)} = \langle \sigma_1^{(\ell)} \sigma_2^{(\ell)} \sigma_3'^{(\ell)} \sigma_4'^{(\ell)} \rangle_{K^{(\ell)}} \Theta_{34}^{(\ell)}$$

Gaussian expectation with cov. $K^{(\ell)}$

$$+ \sum_{\alpha, \beta, \gamma, \delta=1}^4 \langle \sigma_1^{(\ell)} \sigma_3'^{(\ell)} z_\alpha^{(\ell)} \rangle_{K^{(\ell)}} \langle \sigma_2^{(\ell)} \sigma_4'^{(\ell)} z_\beta^{(\ell)} \rangle_{K^{(\ell)}} K_{(\ell)}^{\alpha \gamma} K_{(\ell)}^{\beta \delta} F_{\gamma 3 \delta 4}^{(\ell)}$$

Components of $(K^{(\ell)})^{-1}$

Solving this system of recursions yields the complete network statistics at order $1/n$.

Tensor recursions

For each tensor, there is a layer-wise recursion relation, e.g.

$$F_{1324}^{(\ell+1)} = \langle \sigma_1^{(\ell)} \sigma_2^{(\ell)} \sigma_3'^{(\ell)} \sigma_4'^{(\ell)} \rangle_{K^{(\ell)}} \Theta_{34}^{(\ell)}$$

Gaussian expectation with cov. $K^{(\ell)}$

$$+ \sum_{\alpha, \beta, \gamma, \delta=1}^4 \langle \sigma_1^{(\ell)} \sigma_3'^{(\ell)} z_\alpha^{(\ell)} \rangle_{K^{(\ell)}} \langle \sigma_2^{(\ell)} \sigma_4'^{(\ell)} z_\beta^{(\ell)} \rangle_{K^{(\ell)}} K_{(\ell)}^{\alpha \gamma} K_{(\ell)}^{\beta \delta} F_{\gamma 3 \delta 4}^{(\ell)}$$

Components of $(K^{(\ell)})^{-1}$

Solving this system of recursions yields the complete network statistics at order $1/n$.

① Computing these recursions analytically is very laborious

Feynman diagrams

Use Feynman diagrams to compute these recursions.

Feynman diagrams

Use Feynman diagrams to compute these recursions.

- For preactivations, can read off Feynman rules from NN probability distribution, e.g.

[Banta et al. 2024]

$$z_\alpha \equiv \alpha \bullet \text{---} \quad \langle \quad \rangle_{K^{(\ell)}} \equiv \text{---} \quad \text{---} \quad \beta \bullet \text{---} \quad \widehat{\Delta G}_{i,\alpha\beta}^{(\ell)} \sim \frac{1}{n}$$

Diagram illustrating the Feynman rule for preactivations. On the left, z_α is shown as a dot α followed by a horizontal line. In the middle, $\langle \quad \rangle_{K^{(\ell)}}$ is shown as a circle with a dot inside. On the right, a wavy line labeled $\widehat{\Delta G}_{i,\alpha\beta}^{(\ell)}$ connects two dots labeled β and α .

Feynman diagrams

Use Feynman diagrams to compute these recursions.

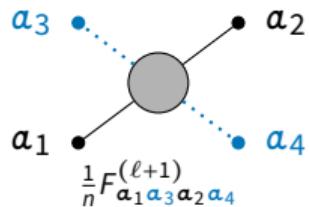
- For preactivations, can read off Feynman rules from NN probability distribution, e.g. [\[Banta et al. 2024\]](#)

$$z_\alpha \equiv \alpha \bullet \text{---} \quad \langle \quad \rangle_{K^{(\ell)}} \equiv \text{---} \quad \text{---} \bullet \beta \quad \widehat{\Delta G}_{i,\alpha\beta}^{(\ell)} \sim \frac{1}{n}$$

- For derivatives, need to find Feynman rules by inspecting analytic expressions

Feynman rules relevant for the F-tensor

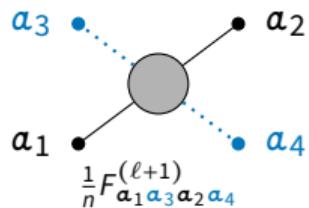
$$\widehat{\Delta\Theta}_{\alpha\beta} \equiv \beta_a \cdot \dots \cdot$$



$$\beta \cdot \sigma_{i,\alpha}^{(\ell)} \sigma_{i,\beta}^{\prime(\ell)} \sim \frac{1}{n}$$

Feynman rules relevant for the F-tensor

$$\widehat{\Delta\Theta}_{\alpha\beta} \equiv \beta_a \cdot \dots \cdot$$

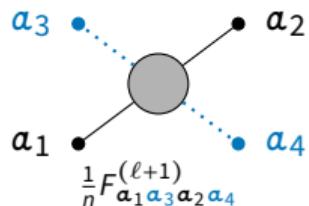


$$\beta \cdot \sigma_{i,\alpha}^{(\ell)} \sigma_{i,\beta}^{\prime(\ell)} \sim \frac{1}{n}$$

The propagator \circlearrowleft satisfies selection rules, e.g.

Feynman rules relevant for the F-tensor

$$\widehat{\Delta\Theta}_{\alpha\beta} \equiv \beta_a \cdot \dots \cdot$$



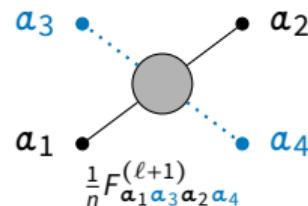
$$\beta_a \cdot \dots \cdot \sigma_{i,\alpha}^{(\ell)} \sigma_{i,\beta}^{\prime(\ell)} \sim \frac{1}{n}$$

The propagator satisfies selection rules, e.g.

- It cannot be directly connected to other propagators

Feynman rules relevant for the F-tensor

$$\widehat{\Delta\Theta}_{\alpha\beta} \equiv \beta_a \cdot \dots \cdot$$



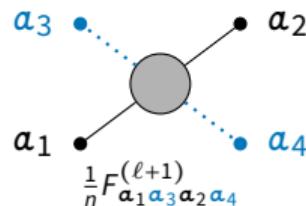
$$\beta_a \cdot \dots \cdot \sigma_{i,\alpha}^{(\ell)} \sigma_{i,\beta}^{\prime(\ell)} \sim \frac{1}{n}$$

The propagator satisfies selection rules, e.g.

- It cannot be directly connected to other propagators
- Dotted lines attached to a propagator do not appear in the Gaussian expectation value

Feynman rules relevant for the F-tensor

$$\widehat{\Delta\Theta}_{\alpha\beta} \equiv \beta_a \cdot \dots \cdot$$



$$\beta_a \cdot \dots \cdot \sigma_{i,\alpha}^{(\ell)} \sigma_{i,\beta}^{\prime(\ell)} \sim \frac{1}{n}$$

The propagator satisfies selection rules, e.g.

- It cannot be directly connected to other propagators
- Dotted lines attached to a propagator do not appear in the Gaussian expectation value
- Pairs of dashed lines of the same color connected to the propagator add a factor of Θ

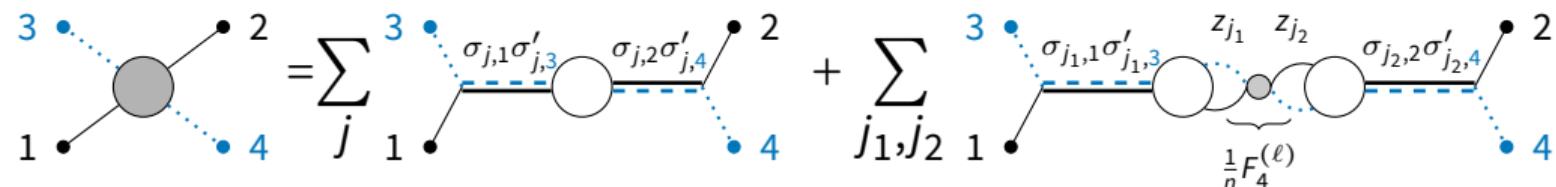
The F-recursion

Draw all diagrams possible for the F-tensor at order $1/n$

$$\begin{array}{c} \text{Diagram 1} \\ \text{Diagram 2} \end{array} = \sum_j \text{Diagram 3} + \sum_{j_1, j_2} \text{Diagram 4}$$

The F-recursion

Draw all diagrams possible for the F-tensor at order $1/n$



Compare to the analytical expression

$$\begin{aligned} \frac{1}{n} F_{1324}^{(\ell+1)} &= \frac{1}{n} \langle \sigma_1^{(\ell)} \sigma_2^{(\ell)} \sigma_3'^{(\ell)} \sigma_4'^{(\ell)} \rangle_{K^{(\ell)}} \Theta_{34}^{(\ell)} \\ &+ \frac{1}{n} \sum_{\alpha, \beta, \gamma, \delta=1}^4 \langle \sigma_1^{(\ell)} \sigma_3'^{(\ell)} z_{\alpha}^{(\ell)} \rangle_{K^{(\ell)}} \langle \sigma_2^{(\ell)} \sigma_4'^{(\ell)} z_{\beta}^{(\ell)} \rangle_{K^{(\ell)}} K_{(\ell)}^{\alpha \gamma} K_{(\ell)}^{\beta \delta} F_{\gamma 3 \delta 4}^{(\ell)} \end{aligned}$$

The NTK recursion at finite width

$$\begin{aligned} \frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell)}_{12} &= \frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell+1)}_{12} + \frac{1}{n_{\ell-1}} K^{\{1\}(\ell)}_{12} z_j + \frac{1}{n_{\ell-1}} V_4^{(\ell)} z_j + \frac{1}{n_{\ell-1}} D_4^{(\ell)} z_j + \frac{1}{n_{\ell-1}} F_4^{(\ell)} z_j \\ &\quad \text{with } \sigma'_j \sigma'_j \end{aligned}$$

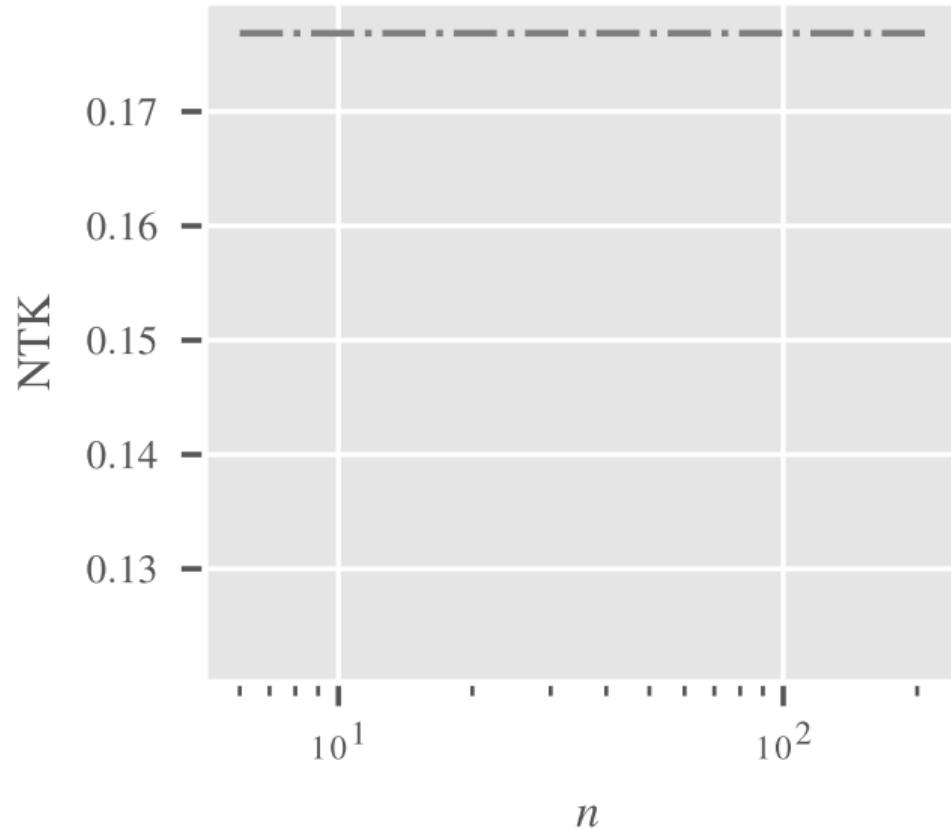
Diagram illustrating the NTK recursion at finite width. The left side shows a gray circle with indices 1 and 2, and a label $\frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell+1)}_{12}$. The right side is a sum of five terms, each with a gray circle and index z_j . The first term is $\frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell)}_{12}$ with a label $\sigma'_j \sigma'_j$. The second term is $\frac{1}{n_{\ell-1}} K^{\{1\}(\ell)}_{12} z_j$. The third term is $\frac{1}{n_{\ell-1}} V_4^{(\ell)} z_j$. The fourth term is $\frac{1}{n_{\ell-1}} D_4^{(\ell)} z_j$. The fifth term is $\frac{1}{n_{\ell-1}} F_4^{(\ell)} z_j$. Each term has a label $\sigma'_j \sigma'_j$ below it.

The NTK recursion at finite width

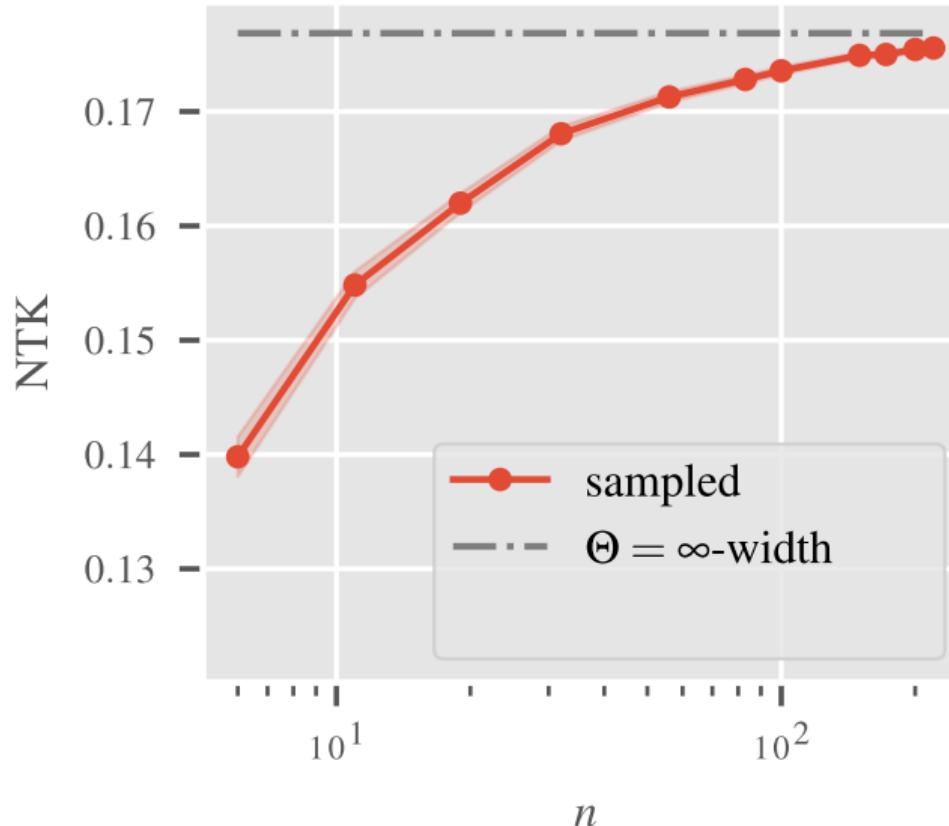
$$\frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell)}_{12} = \frac{1}{n_{\ell-1}} \Theta^{\{1\}(\ell+1)}_{12} + \frac{1}{n_{\ell-1}} K^{\{1\}(\ell)} z_j + \frac{1}{n_{\ell-1}} V_4^{(\ell)} z_j + \frac{1}{n_{\ell-1}} D_4^{(\ell)} z_j + \frac{1}{n_{\ell-1}} F_4^{(\ell)} z_j$$

! Feynman diagrams allow for much simpler derivation of recursion relations

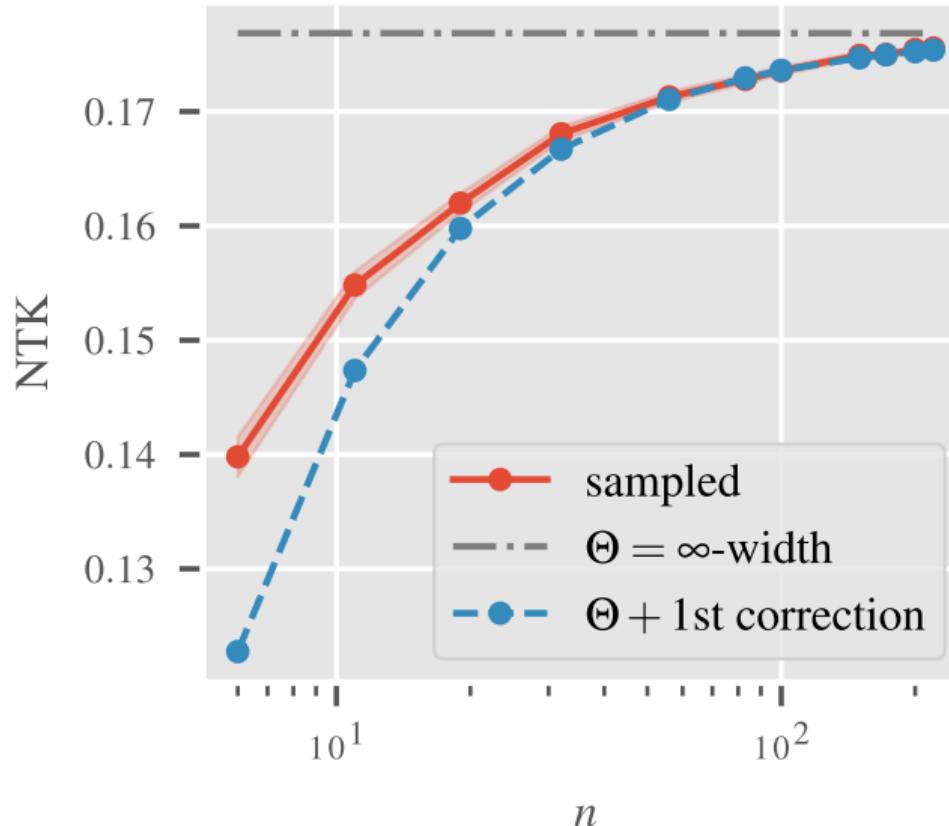
Numerical results



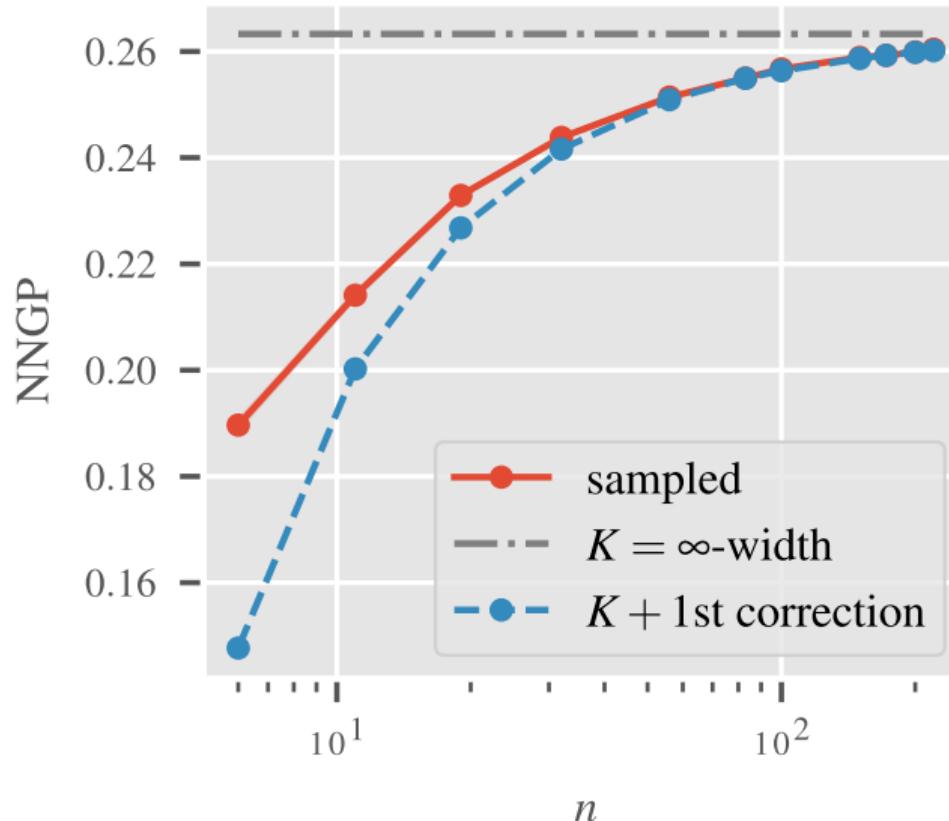
Numerical results



Numerical results



Numerical results



Key takeaways

Key takeaways

- Neural tangent kernels at infinite width can be used to understand data augmentation of deep ensembles:

Key takeaways

- Neural tangent kernels at infinite width can be used to understand data augmentation of deep ensembles:
 - Deep ensembles become exactly equivariant

Key takeaways

- Neural tangent kernels at infinite width can be used to understand data augmentation of deep ensembles:
 - Deep ensembles become exactly equivariant
 - Deep ensembles trained with data augmentation are group convolutional networks

Key takeaways

- Neural tangent kernels at infinite width can be used to understand data augmentation of deep ensembles:
 - Deep ensembles become exactly equivariant
 - Deep ensembles trained with data augmentation are group convolutional networks
- To consider non-Gaussian corrections away from infinite width, consider 1/width expansion

Key takeaways

- Neural tangent kernels at infinite width can be used to understand data augmentation of deep ensembles:
 - Deep ensembles become exactly equivariant
 - Deep ensembles trained with data augmentation are group convolutional networks
- To consider non-Gaussian corrections away from infinite width, consider 1/width expansion
- The corrections can be computed conveniently using Feynman diagrams

Papers

- [Emergent Equivariance in Deep Ensembles](#)
Jan E. Gerken*, Pan Kessel*
ICML 2024 (Oral)
- [Equivariant Neural Tangent Kernels](#)
Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025
- [Finite-Width Neural Tangent Kernels from Feynman Diagrams](#)
Max Guillen*, Philipp Misof*, Jan E. Gerken
arXiv: 2508.11522
* Equal contribution

Thank you!