
Neural Tangent Kernels:
Data augmentation and Feynman diagrams

Jan E. Gerken

WALLENBERG AI, 
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

in collaboration with

Pan Kessel Philipp Misof Max Guillen 1



Symmetries in deep learning

2



Symmetries in deep learning

2



Symmetries in deep learning

rotate

2



Symmetries in deep learning

rotate

network network

2



Symmetries in deep learning

rotate

network network

rotate

2



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

2



Symmetries in deep learning

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

network

rotation image

2



Equivariance

rotate

network network

rotate

⇐⇒ N(ρin(g)x) = ρout(g)N(x)

network

rotation image

2



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Equivariant neural networks

3



Data augmentation

4



Data augmentation

4



Data augmentation

4



Data augmentation

5



Data augmentation

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

No
Eq
uiv
ari
an
ce
!

5



Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?

6



Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?

6



Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?

6



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ

7



Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ

7



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

9



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

9



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

9



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

learning rate

9



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

neural tangent kernel

train data

learning rate

train labels

9



Data augmentation

10



Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

11



Data augmentation at infinite width

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

11



Data augmentation at infinite width

μt(ρ(g)x) = Θ(ρ(g)x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

group transformation

11



Kernel transformation
The neural tangent kernelΘ as well as the NNGP kernel K transform
according to

Θ(ρ(g)x, ρ(g)x′) = ρK(g)Θ(x, x′)ρ⊺K(g) ,
K(ρ(g)x, ρ(g)x′) = ρK(g)K(x, x′)ρ⊺K(g) ,

for all g ∈ G and x, x′ ∈ X .

Hence, for MLPs,

Θ(ρ(g)x, ρ(g)x′) = Θ(x, x′) ⇒ Θ(ρ(g)x, x′) = Θ(x, ρ−1(g)x′)

12



Kernel transformation
The neural tangent kernelΘ as well as the NNGP kernel K transform
according to

Θ(ρ(g)x, ρ(g)x′) = ρK(g)Θ(x, x′)ρ⊺K(g) ,
K(ρ(g)x, ρ(g)x′) = ρK(g)K(x, x′)ρ⊺K(g) ,

for all g ∈ G and x, x′ ∈ X .

Hence, for MLPs,

Θ(ρ(g)x, ρ(g)x′) = Θ(x, x′) ⇒ Θ(ρ(g)x, x′) = Θ(x, ρ−1(g)x′)

12



Permutation shift
● On the training data, group transformations permute the
samples

ρ(g)xi = xπg(i) , πg ∈ SN

● Therefore, for a permutation of training samples associate to g

Π(g)Θ(X ,X) = Θ(ρ(g)X ,X)
= Θ(X , ρ−1(g)X)
= Θ(X ,X)(Π−1(g))⊺
= Θ(X ,X)Π(g)

13



Permutation shift
● On the training data, group transformations permute the
samples

ρ(g)xi = xπg(i) , πg ∈ SN

● Therefore, for a permutation of training samples associate to g

Π(g)Θ(X ,X) = Θ(ρ(g)X ,X)
= Θ(X , ρ−1(g)X)
= Θ(X ,X)(Π−1(g))⊺
= Θ(X ,X)Π(g)

13



Data augmentation at infinite width

μt(ρ(g)x) = Θ(ρ(g)x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

group transformation

14



Data augmentation at infinite width

μt(ρ(g)x) = Θ(ρ(g)x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y

= μt(x)

augmented data
augmented labels

group transformation for augmented data

14



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y

= μt(x)

augmented data
augmented labels

group transformation

14



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y

= μt(x)

augmented labels
group transformation

²
=Y

for invariance

14



Data augmentation at infinite width

μt(ρ(g)x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)ρ(g)Y
= μt(x)

group transformation

²
=Y

for invariance

14



Mean prediction

μt(x)

= E
θ0∼initializations[Nθt(x)] = lim

n→∞
1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

15



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)]

= lim
n→∞

1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

15



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)] = lim

n→∞
1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

15



Mean prediction

μt(x) = E
θ0∼initializations[Nθt(x)] = lim

n→∞
1
n

initn
∑

θ0=init1
N
θt(x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean prediction of deep ensemble

15



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for

● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]

16



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for
● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]

16



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for
● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]

16



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for
● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]

16



Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for
● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]

16



Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.

17



Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.

17



Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.

17



What Does An Augmented Ensemble Converge To?

18



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

19



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

19



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

19



Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)

19



Data augmentation and NTKs

Consider two ensembles:
trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width.

20



Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width.

20



Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width.

20



Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width.
20



Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x) ∀t

∀x

at infinite width.
20



Data augmentation and NTKs
Consider two ensembles:

trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x) ∀t ∀x

at infinite width.
20



Data augmentation and NTKs

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Given an architecture with NTKΘaug,
find an architecture with NTKΘnon−aug

21



Data augmentation and NTKs

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Given an architecture with NTKΘaug,
find an architecture with NTKΘnon−aug

21



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg

● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling

22



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting

σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ

GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv

σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ

GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv

GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

23



NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[z(`)(f )](g) ([z(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E

⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[z(`)(f )](g)
∂θ(`′)

(∂[z
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦

24



NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[z(`)(f )](g) ([z(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E

⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[z(`)(f )](g)
∂θ(`′)

(∂[z
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦

24



NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[z(`)(f )](g) = ∫Gdg κ(g
−1h) [z(`−1)(f )](h)

25



NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[z(`)(f )](g) = ∫Gdg κ(g
−1h) [z(`−1)(f )](h)

25



GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0

Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
)

Θ
(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
)

Θ
(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
)

Θ
(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
)

Θ
(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
)

Θ(f ,f ′)

26



NTKs for GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)

26



NTKs of MLPs and GCNNs

● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting

σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ

GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv

σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ

GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv

GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



NTKs of MLPs and GCNNs
● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

27



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x

28



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug

before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x

28



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x

28



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x
28



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x
28



Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x
28



Data augmentation of CNNs

● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

29



Data augmentation of CNNs
● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

29



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

29



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

29



Data augmentation of CNNs
● Consider a CNN and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN

29



Experiments

30



Isingmodel

E

31



Isingmodel

EE

31



Isingmodel

E E

E1

E2

E3

E4
31



Isingmodel

E E

E1

E2

E3

E4

Relative Standard Deviation

31



100 1,000 10,000
0

0.5

1

1.5

Ensemble Size

Re
la
tiv

e
or
bi
ts
ta
nd

ar
d
de

vi
at
io
n Out of Distribution Data

NTK

Ensemble Means

No Invariance

32



100 1,000 10,000
0

0.5

1

1.5

Ensemble Size

Re
la
tiv

e
or
bi
ts
ta
nd

ar
d
de

vi
at
io
n Out of Distribution Data

NTK Width 512 Width 1024 Width 2048

Ensemble Means

No Invariance

32



100 1,000 10,000
0

0.5

1

1.5

Ensemble Size

Re
la
tiv

e
or
bi
ts
ta
nd

ar
d
de

vi
at
io
n Out of Distribution Data

NTK Width 512 Width 1024 Width 2048

Ensemble Means

No Invariance

32



100 1,000 10,000
0

0.02

0.04

0.06

0.08

0.1

Ensemble Size

Re
la
tiv

e
or
bi
ts
ta
nd

ar
d
de

vi
at
io
n Out of Distribution Data

NTK Width 512 Width 1024 Width 2048

33



Histological slices [Kather et al. 2018]

34



Histological slices [Kather et al. 2018]

class 6

34



Histological slices

class 6

34



Histological slices

E E

class 6

class 6

class 3

class 6
34



Histological slices

E E

class 6

class 6

class 3

class 6
34



Histological slices

E E

class 6

class 6

class 3

class 6

Orbit Same Predictions = 3

34



Out of distribution results

2 4 6 8 10 12 14 16 18 20

4

8

12

16

Epoch

O
rb
it
sa
m
e
pr
ed

ic
tio

ns

Ensemble size 5
22.5○

35



Out of distribution results

2 4 6 8 10 12 14 16 18 20

4

8

12

16

Epoch

O
rb
it
sa
m
e
pr
ed

ic
tio

ns

Ensemble size 5

90○

45○

30○

22.5○22.5○

Perfect invariance

35



Out of distribution results

2 4 6 8 10 12 14 16 18 20

4

8

12

16

Epoch

O
rb
it
sa
m
e
pr
ed

ic
tio

ns

Ensemble size 5

Ensemble members

90○

45○

30○

22.5○22.5○

Perfect invariance

35



Out of distribution results

2 4 6 8 10 12 14 16 18 20

4

8

12

16

Epoch

O
rb
it
sa
m
e
pr
ed

ic
tio

ns

Ensemble size 5

Ensemble members Ensemble

90○

45○

30○

22.5○22.5○

Perfect invariance

35



Out of distribution results

2 4 6 8 10 12 14 16 18 20

4

8

12

16

Epoch

O
rb
it
sa
m
e
pr
ed

ic
tio

ns

Ensemble size 20

Ensemble members Ensemble

90○

45○

30○

22.5○22.5○

Perfect invariance

36



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Comparison to other methods

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85

38



Comparison to other methods

Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85

38



Comparison to other methods

Models trained on rotated FashionMNIST

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85

1[Weiler et al. 2019], 2[Kaba et al. 2022]
38



Convergence of augmented CNNs to GCNNs

39



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on MNIST, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

39



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on MNIST, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

39



Convergence of augmented CNNs to GCNNs

2 4 6 8 10 12 14 16 18 20
Epoch

0.2

0.4

0.6

0.8

1.0

L2
(C
NN

-lo
gi
ts
,G

CN
N-
lo
gi
ts
)

Trained on CIFAR10, Evaluated on OOD

Ensemble Size 1
Ensemble Size 3
Ensemble Size 8
Ensemble Size 100

39



Finite-width from Feynman diagrams

40



Restrictions of the infinite-width limit
The infinite-width limit...

Yields compact expressions

Is under complete analytic control

Only Gaussian distributions

Linearization of the model in the parameters

No feature learning

Use methods from physics to compute finite-width effects

41



Restrictions of the infinite-width limit
The infinite-width limit...

Yields compact expressions

Is under complete analytic control

Only Gaussian distributions

Linearization of the model in the parameters

No feature learning

Use methods from physics to compute finite-width effects

41



Restrictions of the infinite-width limit
The infinite-width limit...

Yields compact expressions

Is under complete analytic control

Only Gaussian distributions

Linearization of the model in the parameters

No feature learning

Use methods from physics to compute finite-width effects
41



Field theory

● In field theory, consider probability distribution over fields
(functions)
● Typically: Gaussian probability distributions with small
corrections

● The Gaussian limit corresponds to free fields
● Corrections correspond to interactions between fields
● Compute statistics of these fields

42



Field theory

● In field theory, consider probability distribution over fields
(functions)
● Typically: Gaussian probability distributions with small
corrections
● The Gaussian limit corresponds to free fields
● Corrections correspond to interactions between fields

● Compute statistics of these fields

42



Field theory

● In field theory, consider probability distribution over fields
(functions)
● Typically: Gaussian probability distributions with small
corrections
● The Gaussian limit corresponds to free fields
● Corrections correspond to interactions between fields
● Compute statistics of these fields

42



Feynman diagrams
Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering

γ

e− e−

e− e−

−ie2 [ū(p3)γ
μu(p1)][ū(p4)γμu(p2)]
(p1 − p3)2

43



Feynman diagrams
Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering

γ

e− e−

e− e−

−ie2 [ū(p3)γ
μu(p1)][ū(p4)γμu(p2)]
(p1 − p3)2

43



Feynman diagrams
Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering

γ

e− e−

e− e−

−ie2 [ū(p3)γ
μu(p1)][ū(p4)γμu(p2)]
(p1 − p3)2

43



Non-Gaussian Corrections from Physics

● Taylor-expand network statistics in 1/width

● Use Feynman diagrams to compute non-Gaussian corrections

Neural Networks Field Theory

infinite width no interactions
Gaussian distribution free fields

finite-width interactions

44



Non-Gaussian Corrections from Physics

● Taylor-expand network statistics in 1/width

● Use Feynman diagrams to compute non-Gaussian corrections

Neural Networks Field Theory

infinite width no interactions
Gaussian distribution free fields

finite-width interactions

44



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)

45



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have

● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have

● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious

47



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious

47



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious

47



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious

47



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious

47



Feynman diagrams

Use Feynman diagrams to compute these recursions.

● For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

zα ≡ α ⟨ ⟩K(`) ≡
α

β
Δ̂G(`)i,αβ ∼ 1

n

● For derivatives, need to find Feynman rules by inspecting
analytic expressions

48



Feynman diagrams

Use Feynman diagrams to compute these recursions.

● For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

zα ≡ α ⟨ ⟩K(`) ≡
α

β
Δ̂G(`)i,αβ ∼ 1

n

● For derivatives, need to find Feynman rules by inspecting
analytic expressions

48



Feynman diagrams

Use Feynman diagrams to compute these recursions.

● For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

zα ≡ α ⟨ ⟩K(`) ≡
α

β
Δ̂G(`)i,αβ ∼ 1

n

● For derivatives, need to find Feynman rules by inspecting
analytic expressions

48



Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.
● It cannot be directly connected to other propagators
● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ

49



Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.

● It cannot be directly connected to other propagators
● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ

49



Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.
● It cannot be directly connected to other propagators

● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ

49



Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.
● It cannot be directly connected to other propagators
● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value

● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ

49



Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.
● It cannot be directly connected to other propagators
● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ

49



The F-recursion
Draw all diagrams possible for the F-tensor at order 1/n

1

3 2

4

=∑
j 1

3 2

4

σ j,1σ
′

j,3 σ j,2σ
′

j,4 + ∑
j1, j2 1

3 z j1 z j2 2

4

σ j1 ,1σ
′

j1 ,3
σ j2 ,2σ

′

j2 ,4

1
n F
(`)
4

Compare to the analytical expression
1
n
F(`+1)1324 =

1
n
⟨σ(`)1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+ 1
n

4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

50



The F-recursion
Draw all diagrams possible for the F-tensor at order 1/n

1

3 2

4

=∑
j 1

3 2

4

σ j,1σ
′

j,3 σ j,2σ
′

j,4 + ∑
j1, j2 1

3 z j1 z j2 2

4

σ j1 ,1σ
′

j1 ,3
σ j2 ,2σ

′

j2 ,4

1
n F
(`)
4

Compare to the analytical expression
1
n
F(`+1)1324 =

1
n
⟨σ(`)1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+ 1
n

4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

50



The NTK recursion at finite width

1 2
1
n`
Θ
{1}(`+1)
12

=

1 2

σ′jσ
′

j

1
n`−1
Θ
{1}(`)

+

1 2

Δ̂Ω j,12

1
n`−1

K{1}(`)

z j

+

1 2

Δ̂Ω j,12

1
n`−1

V(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

D(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

F(`)4

z j

Feynman diagrams allow for much simpler derivation
of recursion relations

51



The NTK recursion at finite width

1 2
1
n`
Θ
{1}(`+1)
12

=

1 2

σ′jσ
′

j

1
n`−1
Θ
{1}(`)

+

1 2

Δ̂Ω j,12

1
n`−1

K{1}(`)

z j

+

1 2

Δ̂Ω j,12

1
n`−1

V(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

D(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

F(`)4

z j

Feynman diagrams allow for much simpler derivation
of recursion relations

51



Numerical results

52



Numerical results

52



Numerical results

52



Numerical results

53



Key takeaways

● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:

● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Key takeaways
● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:

● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Key takeaways
● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:
● Deep ensembles become exactly equivariant

● Deep ensembles trained with data augmentation are group
convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Key takeaways
● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:
● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Key takeaways
● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:
● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Key takeaways
● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:
● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams

54



Papers
● Emergent Equivariance in Deep Ensembles

Jan E. Gerken⋆, Pan Kessel⋆
ICML 2024 (Oral)

● Equivariant Neural Tangent Kernels
Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025

● Finite-Width Neural Tangent Kernels from Feynman Diagrams
Max Guillen⋆, Philipp Misof⋆, Jan E. Gerken
arXiv: 2508.11522
⋆ Equal contribution

Thank you!
55


	Data augmentation
	What Does An Augmented Ensemble Converge To?
	Experiments
	Finite-width from Feynman diagrams
	Backup

