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Data augmentation

Easy to implement

No specialized architecture necessary

No exact equivariance

Can we understand data augmentation theoretically?
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Empirical NTK
Training dynamics under continuous gradient descent:

dN
θ
(x)

dt
= − η

N

N
∑
i=1
Θ
θ
(x, xi)

∂L
∂N(xi)

learning rate

training sample

loss

with the empirical neural tangent kernel (NTK)

Θ
θ
(x, x′) = ∑

μ

∂N(x)
∂θμ

∂N(x′)
∂θμ
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∞ ∞

∞ ∞

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Infinite width limit [Jacot et al. 2018]

∞ ∞

∞ ∞
NTK becomes independent of initialization

NTK becomes constant in training

NTK can be computed for most networks

Training dynamics can be solved

8



Mean prediction fromNTK [Jacot et al. 2018]

At infinite width, the mean prediction is given by

μt(x) = Θ(x,X)Θ(X ,X)−1(I − e−ηΘ(X ,X)t)Y
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Data augmentation at infinite width
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= μt(x)
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Kernel transformation
The neural tangent kernelΘ as well as the NNGP kernel K transform
according to

Θ(ρ(g)x, ρ(g)x′) = ρK(g)Θ(x, x′)ρ⊺K(g) ,
K(ρ(g)x, ρ(g)x′) = ρK(g)K(x, x′)ρ⊺K(g) ,

for all g ∈ G and x, x′ ∈ X .

Hence, for MLPs,

Θ(ρ(g)x, ρ(g)x′) = Θ(x, x′) ⇒ Θ(ρ(g)x, x′) = Θ(x, ρ−1(g)x′)
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Permutation shift
● On the training data, group transformations permute the
samples

ρ(g)xi = xπg(i) , πg ∈ SN

● Therefore, for a permutation of training samples associate to g

Π(g)Θ(X ,X) = Θ(ρ(g)X ,X)
= Θ(X , ρ−1(g)X)
= Θ(X ,X)(Π−1(g))⊺
= Θ(X ,X)Π(g)
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Mean prediction

μt(x)

= E
θ0∼initializations[Nθt(x)] = lim

n→∞
1
n

initn
∑

θ0=init1
N
θt(x)
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mean prediction of deep ensemble
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Main conclusion

Deep ensembles trained with data augmentation are equivariant.

Proof of exact equivariance for

● full data augmentation
● infinite ensembles

Equivariance holds for all training times

Equivariance holds away from the training data

Holds also for finite-width networks [Nordenfors, Flinth 2024]
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Intuitive explanation

Equivariance holds for all training times

Equivariance holds away from the training data

At infinite width, the mean output at initialization is zero
everywhere.

Training with full data augmentation leads to an equivariant
function.
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What Does An Augmented Ensemble Converge To?
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Rotating images

f (x)
f : pixels→ colors

f (ρ(g−1)x)
= [ρreg(g)f ](x)
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Data augmentation and NTKs

Consider two ensembles:
trained without data augmentation trained with data augmentation

If

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Then

μ
non−aug
t (x) = μaugt (x)

∀t ∀x

at infinite width.
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Data augmentation and NTKs

Θ
non−aug(f , f ′) = 1

∣G∣ ∑g∈G
Θ
aug(f , ρreg(g)f ′)

Given an architecture with NTKΘaug,
find an architecture with NTKΘnon−aug
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Group convolutions [Cohen, Welling 2016]

Group conv’s are the (unique) linear layers equivariant wrt ρreg
● Ordinary convolutions

f ′(y) = ∫Xdx κ(x − y) f (x)

● Group convolutions

f ′(g) = ∫Xdx κ(ρ(g
−1)x) f (x) lifting

f ′(g) = ∫Gdg κ(g
−1h) f (h) group convolution

f ′ = 1
vol(G) ∫Gdg f (g) group pooling
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GCNNs

Stack GConv-layers to obtain an invariant network

lifting σ GConv σ GConv GPool

Compute NTK with layer-wise recursion

0 Θ
(1)
g,g′(f ,f

′
) Θ

(2)
g,g′(f ,f

′
) Θ

(3)
g,g′(f ,f

′
) Θ

(4)
g,g′(f ,f

′
) Θ

(5)
g,g′(f ,f

′
) Θ(f ,f ′)
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NTKs for GCNNs

For GCNN-layers, define the NNGP and NTK via

K(`)g,g′(f , f
′) = E [[z(`)(f )](g) ([z(`)(f ′)](g′))

⊺
]

Θ
(`)
g,g′(f , f

′) = E

⎡⎢⎢⎢⎢⎣

`

∑
`′=1

∂[z(`)(f )](g)
∂θ(`′)

(∂[z
(`)(f ′)](g′)
∂θ(`′)

)
⊺⎤⎥⎥⎥⎥⎦
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NTKs for GCNNs

The layer-recursion for a GCNN-layer is given by

K(`+1)g,g′ (f , f
′) = 1
∣Sκ∣ ∫Sκ

dhK(`)gh,g′h(f , f
′)

Θ
(`+1)
g,g′ (f , f

′) = K(`+1)g,g′ (f , f
′) + 1
∣Sκ∣ ∫Sκ

dhΘ(`)gh,g′h(f , f
′)

[z(`)(f )](g) = ∫Gdg κ(g
−1h) [z(`−1)(f )](h)
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Compute NTK with layer-wise recursion
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NTKs of MLPs and GCNNs

● Consider two neural networks

An MLP

FC σ FC σ FC

A GCNN

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)
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Data augmentation of MLPs

Θ
GCNN(f , f ′) = 1

∣G∣ ∑g∈G
Θ
MLP(f , ρreg(g)f ′)

before: non-aug before: aug

training the MLP on
G-augmented data

training the GCNN on
unaugmented data=

in the ensemble mean, ∀t, ∀x
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Data augmentation of CNNs

● Consider a CNN

and a GCNN invariant wrt. roto-translations

Conv σ Conv σ Conv Pool

lifting σ GConv σ GConv GPool

● Then

Θ
GCNN(f , f ′) = 1

n ∑r∈Cn
Θ
CNN(f , ρreg(r)f ′)

By training the CNN on rotated images, one obtains a
roto-translation invariant GCNN
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Experiments
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Histological slices [Kather et al. 2018]
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Out of distribution results
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Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Further experimental results

Emergent invariance for rotated FashionMNIST

Partial augmentation for continuous symmetries

Emergent equivariance (as opposed to invariance)

37



Comparison to other methods

Orbit same predictions out of distribution:

C4 C8 C16

DeepEns+DA 3.85±0.12 7.72±0.34 15.24±0.69
only DA 3.41±0.18 6.73±0.24 12.77±0.71
E2CNN1 4±0.0 7.71±0.21 15.08±0.34
Canon2 4±0.0 7.45±0.14 12.41±0.85
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Convergence of augmented CNNs to GCNNs
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Finite-width from Feynman diagrams
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Restrictions of the infinite-width limit
The infinite-width limit...

Yields compact expressions

Is under complete analytic control

Only Gaussian distributions

Linearization of the model in the parameters

No feature learning

Use methods from physics to compute finite-width effects
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Field theory

● In field theory, consider probability distribution over fields
(functions)
● Typically: Gaussian probability distributions with small
corrections

● The Gaussian limit corresponds to free fields
● Corrections correspond to interactions between fields
● Compute statistics of these fields
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Feynman diagrams
Feynman diagrams are used to compute statistics

E.g. Electron-electron scattering

γ

e− e−

e− e−

−ie2 [ū(p3)γ
μu(p1)][ū(p4)γμu(p2)]
(p1 − p3)2
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−ie2 [ū(p3)γ
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Non-Gaussian Corrections from Physics

● Taylor-expand network statistics in 1/width

● Use Feynman diagrams to compute non-Gaussian corrections

Neural Networks Field Theory

infinite width no interactions
Gaussian distribution free fields

finite-width interactions
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Tensors for neural network statistics [Roberts, Yaida 2022]

Goal: Compute corrections for all neural network statistics at
initialization, e.g.

Ec
θ
[z(`)i1 (x1), z

(`)
i2
(x2), Δ̂Θ

(`)
i3i4(x3, x4)]

cumulant preactivation NTK fluctuation, Δ̂Θ(`) = Θ̂(`) − Eθ[Θ̂
(`)
]

Decompose these into tensors

= 1
n
(D(`)1234δi1i2δi3i4+F

(`)
1324δi1i3δi2i4+F

(`)
1423δi1i4δi2i3)

Gram tensor, F(`)1324 = F
(`)
(x1, x3, x2, x4)
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Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have

● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have

● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensors for neural network statistics [Roberts, Yaida 2022]

Keeping track of these tensors is sufficient.

At order 1/n, we have
● K, K{1} and V4 for preactivations

● Θ,Θ{1}, A and B for derivatives

● D and F for mixed statistics

● 6 more for higher derivatives, needed for training

46



Tensor recursions
For each tensor, there is a layer-wise recursion relation, e.g.

F(`+1)1324 = ⟨σ
(`)
1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+
4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4

Gaussian expectation with cov. K(`)σ(z(`)(x1))

Components of (K(`))−1

Solving this system of recursions yields the complete network
statistics at order 1/n.

Computing these recursions analytically is very laborious
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Feynman diagrams

Use Feynman diagrams to compute these recursions.

● For preactivations, can read off Feynman rules from NN
probability distribution, e.g. [Banta et al. 2024]

zα ≡ α ⟨ ⟩K(`) ≡
α

β
Δ̂G(`)i,αβ ∼ 1

n

● For derivatives, need to find Feynman rules by inspecting
analytic expressions
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Feynman rules relevant for the F-tensor

Δ̂Θ
αβ
≡
α
β

α1

α3

1
n F
(`+1)
α1α3α2α4

α2

α4 α

β
σ
(`)
i,α σ

′(`)
i,β ∼ 1

n

The propagator satisfies selection rules, e.g.
● It cannot be directly connected to other propagators
● Dotted lines attached to a propagator do not appear in the
Gaussian expectation value
● Pairs of dashed lines of the same color connected to the
propagator add a factor ofΘ
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The F-recursion
Draw all diagrams possible for the F-tensor at order 1/n

1

3 2

4

=∑
j 1

3 2

4

σ j,1σ
′

j,3 σ j,2σ
′

j,4 + ∑
j1, j2 1

3 z j1 z j2 2

4

σ j1 ,1σ
′

j1 ,3
σ j2 ,2σ

′

j2 ,4

1
n F
(`)
4

Compare to the analytical expression
1
n
F(`+1)1324 =

1
n
⟨σ(`)1 σ

(`)
2 σ
′(`)
3 σ

′(`)
4 ⟩K(`)Θ

(`)
34

+ 1
n

4
∑

α,β ,γ,δ=1
⟨σ(`)1 σ

′(`)
3 z(`)α ⟩K(`)⟨σ

(`)
2 σ
′(`)
4 z(`)

β
⟩K(`)K

αγ

(`)K
βδ

(`)F
(`)
γ3δ4
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The NTK recursion at finite width

1 2
1
n`
Θ
{1}(`+1)
12

=

1 2

σ′jσ
′

j

1
n`−1
Θ
{1}(`)

+

1 2

Δ̂Ω j,12

1
n`−1

K{1}(`)

z j

+

1 2

Δ̂Ω j,12

1
n`−1

V(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

D(`)4

z j

+

1 2

σ′jσ
′

j

1
n`−1

F(`)4

z j

Feynman diagrams allow for much simpler derivation
of recursion relations
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Numerical results
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Key takeaways

● Neural tangent kernels at infinite width can be used to
understand data augmentation of deep ensembles:

● Deep ensembles become exactly equivariant
● Deep ensembles trained with data augmentation are group

convolutional networks

● To consider non-Gaussian corrections away from infinite width,
consider 1/width expansion

● The corrections can be computed conveniently using Feynman
diagrams
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Papers
● Emergent Equivariance in Deep Ensembles

Jan E. Gerken⋆, Pan Kessel⋆
ICML 2024 (Oral)

● Equivariant Neural Tangent Kernels
Philipp Misof, Pan Kessel, Jan E. Gerken
ICML 2025

● Finite-Width Neural Tangent Kernels from Feynman Diagrams
Max Guillen⋆, Philipp Misof⋆, Jan E. Gerken
arXiv: 2508.11522
⋆ Equal contribution

Thank you!
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