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Discrete symmetry groups arise in string theory in many contexts and several inter-

esting physical quantities are defined on spaces that carry an action of these groups.

Scattering amplitudes in particular have to be invariant under the group action and

are often associated with automorphic forms. It has been noted first by Green,

Miller and Vanhove as well as Pioline that these automorphic forms belong to very

special automorphic representations, so-called small representations, leading to a

rich interplay between mathematics and physics. This development and some open

questions are sketched in this contribution.



1 Introduction

In this introduction, the physical quantities of interest will be sketched for non-experts

in very broad strokes, along with their properties. Readers primarily interested in the

mathematical statements are welcome to skip to section 2. As a complementary and

more detailed description, the reader may consult [1] as well as the original papers [2–7].

1.1 Interactions and scattering amplitudes

One of the basic objects of interest in any physical theory is what interactions between dif-

ferent objects it describes. The prototypical example is particle physics where Quantum

Field Theory (QFT) is the prime conceptual framework for constructing and studying

physical theories. For instance, Quantum Electrodynamics (QED) describes the interac-

tion of electrons with photons. The former are among the basic carriers of electric charge

and the latter of electromagnetic radiation such as light rays, and since electric charges

are both acted upon by electromagnetic radiation and can produce electromagnetic radi-

ation, there is a non-trivial interaction between electrons and photons. Interactions can

be visualised in so-called Feynman diagrams, see Figure 1.

Figure 1: Interactions in QED. (a) shows the fundamental interaction between two electrons

(straight line) and a photon (wavy line). (b) shows a simple 2→2 scattering process, also known

as a four-point interaction. Panel (c) shows a very a general four-point interaction where the

blob in the middle represents an unknown sequence of interactions.

It turns out that QED has exactly one fundamental interaction between two electrons

and a photon. This is visualised in panel (a) of the figure where time is taken to run

upwards for definiteness and the diagram can be interpreted as the emission of a photon

by an electron. As the emitted photon carries both energy and momentum, the trajectory

of the electron is modified. Panel (b) illustrates a more complicated process comprising

two instances of the fundamental interaction. It describes two electrons coming together,
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interacting via the electromagnetic field (i.e. a photon) and going apart again. This is the

typical scenario of 2→ 2 scattering process with two incoming and two outgoing particles.

This is not unlike what is actually performed in particle experiments such as the colliders

at CERN in Geneva, where two particles are brought together in a collision and then the

particles that come out after collision are observed.1

The third panel (c) of Figure 1 illustrates the case that is even closer to experiment,

namely where one does not know what happening, but only has information about the

incoming and about the outgoing particles: The particles are prepared with specific prop-

erties (energy, momentum (roughly direction and speed), possibly intrinsic properties

known as polarisation) and similarly data is measured for the outgoing particles.

Since particle physics is a quantum theory, there is uncertainty about the exact happen-

ings in the blob of panel (c). In principle anything that can happen, does happen, albeit

with different probabilities. The principal object of interest is the scattering amplitude

A(p1, p2, p3, p4) ∈ C , (1)

where pi for i = 1, . . . , 4 is meant to indicate the specifics of the four particles involved

in the scattering process. This is often also referred to as kinematic data. The scattering

amplitude encodes the probability of a scattering process with the given choice of kine-

matic data taking place. It is only a probability since in quantum theory, outcomes of

experiments typically only follow a probability distribution if the experiment is repeated

often enough.

The amplitude (1) is a complicated function of the kinematic data and in no realistic

physical theory its functional form is known exactly. However, it is possible to obtain

approximate answer for a given theory that can then be compared to experiment and

help to identify promising physical models.

One important approximation uses building up the amplitude from elementary inter-

actions such as panel (a) of Figure 1. In Feynman diagram terms the quantum principle

implies that the blob has to be replaced by the sum of all possible diagrams that can be

drawn using the elementary interaction of panel (a), without any restriction on topology.

However, there is an ordering principle related to the fact that there is an elementary

strength associated to the fundamental interaction in panel (a). One assigns a coupling

constant g to the elementary three-valent vertex and more complicated diagrams tend to

have many occurrences of this coupling constant. If the coupling constant is small, these

more complicated diagrams are expected to the less important for the final process. This

is the basic idea of perturbation theory. Moreover, there is also the notion of relating the

number of loops of a diagram to Planck’s constant, which is also small, and therefore

1The current most powerful particle collider at CERN is called the Large Hadron Collider and brings

together not electrons but hadrons that are more complicated composite particles.
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higher-loop diagrams are also expected to be small corrections to those without loops,

known as tree diagrams.

The perturbative approach posits that the amplitude (1) has an expansion of the form

A(p1, p2, p3, p4) =
∑
n≥0

gnAn(p1, p2, p3, p4) +Anon-pert.(p1, p2, p3.p4) , (2)

where the first, power series term is called the perturbative part of the amplitude and is

analytic in the coupling constant g around g = 0, while the second, non-analytic term is

called the non-perturbative term and for example can contain terms of the form e−1/g.2

1.2 String theory

QFT approaches to interactions have been enormously successful. However, they leave

certain aspects related to the very high-energy behaviour open as well as the consistent

coupling to gravity at the quantum level. Both issues are potentially resolved in string

theory where zero-dimensional point particles are replaced by extended one-dimensional

strings. In perturbation theory, instead of drawing one-dimensional lines as in Figure 1

for trajectories, one now has to draw two-dimensional surfaces, more precisely Riemann

surfaces with boundaries. We will restrict to closed strings here and some examples of

so-called string world-sheets (generalising the particle trajectories) are shown in Figure 2.

Note that string theory only has one kind of string and the different particle types (elec-

tron, photon, ...) are thought to be associated with different vibrational patterns of the

string that can oscillate like a string instrument.

An important point is that for mathematical consistency of the resulting equations one

normally considers superstrings that have an additional property called supersymmetry.

Moreover, superstrings (strings henceforth) are required to move in a ten-dimensional

space-time, such as R1,9, where the superscript indicates that this is a space with one time

and nine space directions, therefore generalising the usual (1+ 3)-dimensional Minkowski

space R1,3 of special relativity to higher dimensions. Other ten-dimensional space-times

where not all ten directions are infinitely extend, but some can be compact, are possible as

well and important for trying to connect string theory to the world of our daily experience.

Finding the right type of string compactification is, however, a long-standing and open

problem. In this contribution we will later encounter the case when the ten-dimensional

space-time is of the form R1,D−1 × T 10−D for 3 ≤ D ≤ 10 and where T 10−D is compact

torus of dimension d = 10−D.

Figure 2 shows scattering processes that involve four external string states represented

by the four circular boundaries of the surface. As in QFT, there is information about the

2The power series has typically zero radius of convergence and is only asymptotic and then intimately

related to the non-perturbative terms through the theory of resurgence, see for instance [8].
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Figure 2: Two string theory theory world-sheets at genus zero (a) and genus one (b) with four

external string states. Going to the right is the result of applying a conformal transformation

such that the boundaries are mapped to the marked points (crosses).

precise kinematic data associated with the boundaries, such as the energy and momentum.

String theory is invariant under conformal transformations that can be used to map the

string world-sheets to surfaces with marked points as shown when going from the left to

the right of the figure. The kinematic data is now at the marked points and in practice

implemented via so-called vertex operators.3

String theory now associates a string scattering amplitude with a given choice of

kinematic data, i.e. string states being scattered. Similar to the perturbative expansion

in the coupling constant in (2), there is a perturbative expansion in string theory that

involves an expansion in the string coupling constant gs. The power of gs in the expansion

is related to the genus of the Riemann surface. Panel (a) of Figure 2 depicts a Riemann

surface of genus zero while panel (b) has genus one.

3This perturbative picture of string theory is in the language of conformal field theory. For textbooks

on string theory see [9–11].
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The way that the contribution at a given genus is calculated involves an integral over

the moduli space Mh,n of Riemann surfaces of genus h with n marked points which is

typically hard to perform in practice. One celebrated example where this is possible is

for the genus-zero world-sheet with four marked points, where all the marked points are

associated with so-called gravitons. These are vibrational patterns similar to the basic

excitations of the gravitational field and gravitons, just like gravitational waves, have a

momentum k ∈ R1,9 and a polarisation ϵ ∈ S2(R1,9), where S2 means the symmetric

square, so that while k is a vector, ϵ is a symmetric two-tensor.

For the spherical world-sheet of genus zero, string theory gives the contribution [9]

Ah=0(k1, k2, k3, k4; ϵ1, ϵ2, ϵ3, ϵ4) = g−2
s

1

stu

Γ(1− α′s)Γ(1− α′s)Γ(1− α′s)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)
R4
(
{ki}; {ϵi}

)
(3)

to the four-graviton scattering amplitude. This formula contains the (rescaled) Mandel-

stam variables

s = −1

4
|k1 + k2|2 , t = −1

4
|k1 + k3|2 , u = −1

4
|k1 + k4|2 (4)

that are computed using the Minkowski signature bilinear form diag(−,+,+, . . . ,+) on

R1,9 from pairs of momentum vectors ki (i = 1, 2, 3, 4). They are therefore invariant under

the Lorentz group O(1, 9) that leaves the bilinear form invariant and Lorentz invariance

of the amplitude constrains its dependence to the Mandelstam invariants. They moreover

satisfy s+ t+u = 0 by conservation of momentum in the scattering process. The quantity

R4
(
{ki}; {ϵi}

)
that depends on the momenta ki and polarisations ϵi represents a specific

and fixed Lorentz-invariant combination of these objects. Its name arises since it can be

thought of as the contraction of four (linearised) Riemann curvature tensors, where the

curvature tensor is associated with the gravitational field. Its precise form will play no

role in this contribution.

The parameter α′ that appears in (3) together with the Mandelstam variables is re-

lated to the characteristic length ℓs of a string by α′ = ℓ2s . With this parameter, the

combinations α′s etc. are dimensionless, meaning that they do not carry any units of

length or mass. The Mandelstam variables measure the total energy entering or being

transferred in the scattering process. Large amounts of energy (in string units) corre-

spond to α′s ≫ 1. Phenomenologically (and technically) one is often interested in the

low-energy expansion of an amplitude, that is the regime

α′s≪ 1, α′t≪ 1 , α′u≪ 1 . (5)

Suppressing the arguments on the left-hand side, the genus-zero amplitude (3) can be

expanded for low energies (i.e., for (5)) as

Ah=0 = g−2
s R4

(
3

σ3
+ (α′)32ζ(3) + (α′)5ζ(5)σ2 + . . .

)
, (6)
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Figure 3: Schematic depiction of the double expansion of a (perturbative) string scattering

amplitude.

where we have converted to the elementary symmetric polynomials

σ2 = s2 + t2 + u2 , σ3 = s3 + t3 + u3 , (7)

which, thanks to s + t + u = 0, are the only independent ones and ζ(s) is the Riemann

zeta function.

In summary, we arrive at the picture that a string scattering amplitude has a dou-

ble expansion. The two expansion parameters are the energy scale (often called the α′-

expansion) and the genus of the Riemann surface (often called the gs-expansion). The

situation is shown in Figure 3 where two points have been marked with their numerical

values as can be deduced from the genus-zero formula (6). Obtaining more numerical

values in the figure very rapidly becomes hard at higher genus and we refer the reader

to [12] for a recent summary. We stress that both expansions are asymptotic and there

are in general non-perturbative terms needed.

The connection to automorphic forms arises at a fixed order in α′ but covers all orders

in gs and so corresponds to a vertical line in Figure 3. Remarkably, we will see that the

correct interpretation in terms of automorphic forms gives easy access to some higher-

genus data and moreover produces the non-perturbative terms that are normally very

hard to access.

1.3 Duality symmetries in string theory

In order to understand the occurrence of automorphic forms in string scattering ampli-

tudes we first have to explain what the discrete symmetry giving rise to automorphy is as

well as the space that it acts on. The situation will be explained for the simplest case when
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the string moves in a space-time R1,D−1 × T 10−D known as toroidal compactification of

string theory. In this case the discrete symmetry is given by so-called U-duality in string

theory [13] and the space it acts on is the moduli space of such toroidal compactifications

which turns out to be a symmetric space for a non-compact Lie group. We will describe

these structures in two steps.

String theory on a torus T d with d = 10−D depends firstly not only on the geometry

of the torus, but also on additional structure that can be put on the torus, namely a

two-form (known as B-field in string theory) and a function (known as the dilaton ϕ).

The B-field appears since the extended string unlike point particles can also see geometry

beyond Riemannian geometry. The geometry and B-field combine such that even and

self-dual lattices IId,d of split signature play a role, the definite part of which can be

thought of as giving rise to the geometric torus T d. The moduli space of such lattices is

MT = O(d, d;Z)\O(d, d;R)/O(d;R)×O(d;R) , (8)

where O(d, d;Z) denotes the discrete group leaving a given lattice IId,d invariant and

therefore leading to the same toroidal compactification. This discrete symmetry is known

as T -duality in string theory and the fact that string theory is invariant under it can be

checked in conformal field theory. The moduli space MT is a locally symmetric space

associated with the split real Lie group O(d, d;R). The dilaton field mentioned above is

invariant under these structures and is actually related to the string coupling constant gs
by gs = eϕ (when ϕ is constant, otherwise its expectation value).

Secondly, the toroidal compactification of a string is also sensitive to other data as-

sociated with other moduli parameters (known as Ramond–Ramond fields) that extend

the above T-duality moduli space MT by additional directions. Without explaining the

details here, the extra data replaces the locally symmetric space (8) based on O(d, d;R)
by one based on Ed+1(d+1)(R) [13]:

MU = Ed+1(d+1)(Z)\Ed+1(d+1)(R)/Kd+1(R) , (9)

where Ed+1(d+1) denotes a split real Lie group in the Cremmer–Julia sequence [14,15] that

includes in particular the simply-laced exceptionals. The Dynkin diagram is shown in

Figure 4. Kd+1(R) is the maximal compact subgroup and the discrete group Ed+1(d+1)(Z)
is called the U-duality group and is a Chevalley group (that can also be defined as the

stabiliser of a suitable lattice of ‘charges’). U-duality is a symmetry that is strongly

believed to act on any given order in the α′-expression without mixing them [16].

From the Dynkin diagram we see that there is a maximal parabolic subgroup with

Levi factor

GL(1)× Spin(d, d;R) ⊂ Ed+1(d+1)(R) (10)
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Figure 4: Dynkin diagram of the Cremmer–Julia sequence of Lie groups of type Ed+1. The

labelling coming from string theory coincides with that used in Bourbaki.

where the Spin(d, d) relates back to the lattice IId,d and GL(1) is related to the dilaton

ϕ. While the dilaton was invariant under duality transformations from O(d, d;Z), it is

no longer invariant under U-duality transformations Ed+1(d+1)(Z). Due to the relation

gs = eϕ mentioned above, U-duality therefore mixes different orders in the gs-expansion

and therefore acts along vertical lines in Figure 3. If all the other moduli fields vanish

there is in particular a duality transformation that sends

ϕ→ −ϕ ⇔ gs → g−1
s (11)

and therefore exchanges small with large values of the string coupling constant gs.
4 Thus,

this transformation is called a strong-weak coupling duality, or S-duality for short. The

union of S-duality and T-duality is the full U-duality Ed+1(d+1)(Z). Physical quantities in
toroidally compactified strings, such as scattering amplitudes, depend on where one is on

moduli space MU .

2 Automorphic forms in scattering amplitudes

As explained in the previous section, a scattering amplitude of a toroidally compactified

is a function on MU , the locally symmetric space introduced in (9). We can reformulate

this by introducing functions

E(p,q) : Ed+1(d+1)(R) → R
Φ 7→ E(p,q)(Φ) (12)

for integers p, q ≥ 0 that are required to satisfy

E(p,q)(γΦk) = E(p,q)(Φ) for all k ∈ Kd+1 and γ ∈ Ed+1(d+1)(Z). (13)

4This is in fact like the transformation of the imaginary part of a upper half-plane variable under

SL(2,Z) which is the particular case of d = 0 in the above construction.
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These functions appear in the α′-expansion of the (analytic in α′-part of the) string four-

graviton scattering amplitude according to

A
(
{ki}; {ϵi}

)
= R4

(
{ki}; {ϵi}

)( 3

(α′)3σ3
+
∑
p,q≥0

(α′)p+qE(p,q)(Φ)σp2σ
q
3

)
. (14)

In other words, the functions E(p,q) summarise the contribution to the amplitude at a fixed

order in α′, i.e. along a vertical line in Figure 3.

The functions E(p,q) are the main functions of interest in connection with automorphic

forms and automorphic representations. They satisfy

• automorphy and K-invariance, see (13),

• moderate growth in order to be compatible with small gs expansion for the cusp

associated with the parabolic subgroup (10) and similarly at other cusps, and

• differential equations for low values of p and q due to supersymmetry [17–22].

The list of the above properties corresponds to the definition of (spherical) automorphic

forms on Ed+1(d+1), except for the last condition that does not imply we have a finite-

dimensional representation under center Z of the universal enveloping algebra. Only for

(p, q) = (0, 0) and (p, q) = (1, 0) we will see that the differential equations imply Z-

finiteness. We will discuss more general functions further in Section 4.1. In the following

we shall write Ed+1 for brevity.

2.1 Lowest order cases

The first two terms in the α′-expansion correspond to E(0,0) and E(1,0) and are called the

coefficients of effective interactions known as R4 and D4R4 in physics.

By analysing their differential equations and Fourier expansions they have been identi-

fied as (maximal parabolic) Eisenstein series of the type defined by Langlands [23]. Let Pi
be the maximal parabolic subgroup of Ed+1 associated with node i of the Dynkin diagram

shown in Figure 4 and

χs(p) = exp⟨2sΛi|H(p)⟩ (15)

be the character on Pi for s ∈ C defined using the fundamental weight Λi of the Lie algebra

ed+1 = Lie(Ed+1) and H the logarithm map associated with the Levi decomposition of

Ed+1. More precisely, if GL(1) is the torus part associated with node i and we write an

element of Ed+1 as Φ = pk with p ∈ Pi and k ∈ Kd+1, then H(Φ) = H(p) = log r where

exp(r) is the GL(1) element that is uniquely defined (even though the decomposition of

Φ is not).
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The character χs on Pi can be extended to a map on Ed+1 since the logarithm map is

well-defined on the whole Lie group. Denote by fχs the extension of χs to Ed+1, defined

by fχs(Φ) = fχs(pk) = χs(p). Therefore we can define the Eisenstein series

Ei;s(Φ) =
∑

γ∈Pi(Z)\Ed+1(Z)

fχs(γΦ) . (16)

This sum is known to converge for Re(s) ≫ 1, more precisely in the Godement range [24]

and to satisfy functional relations associated with the Weyl group of Ed+1 [23]. The

functional relations yield analytic continuation to the complex s-plane.

By construction, the Eisenstein series Ei;s satisfies Ei;s(γΦk) = Ei;s(Φ) for γ ∈ Ed+1(Z)
and k ∈ Kd+1. Moreover, the Eisenstein series satisfies differential equations since the

character does. Among the simplest one is

(∆− 2s⟨Λi|sΛi − ρ⟩)Ei;s(Φ) = 0 , (17)

where ∆ is the invariant Laplace operator on the symmetric space Ed+1/Kd+1 corre-

sponding to the quadratic Casimir in the universal enveloping algebra. There are similar

differential equations associated with the higher order Casimir operators and Ei;s is finite

under the center Z.

In terms of the Eisenstein series (16), the two lowest order coefficient functions are [2,3]

E(0,0)(Φ) = 2ζ(3)E1;3/2(Φ) ,

E(1,0)(Φ) = ζ(5)E1;5/2(Φ) . (18)

The fact that the same numbers already encountered in Figure 3 show up in the normali-

sations of these functions is not surprising since for γ = 1 in (16), the values s = 3/2 and

s = 5/2 correspond exactly to the genus-zero contributions to the scattering amplitude.

What is surprising and remarkable is that the rest of the scattering amplitude at these

orders in α′ is simply given by summing over all U-duality images as determined by the

Poincaré sum (16).

We note that functional relations allow us to rewrite the functions in (18) in terms

of maximal parabolic subgroups different from P1. These different forms have different

physical interpretations, e.g. coming from supergravity or exceptional field theory cal-

culations [25]. The functions E(p,q) for other values of p and q will be commented on in

Section 4.1.

While the specific choices of parameters in (18) have a clear physical explanation,

it might seem surprising from a mathematical viewpoint, why some particular choice of

parameters should be singled out. It turns out that this can be explained in terms of

representation theory which we turn to next.
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2.2 Automorphic representations

Given an automorphic form η : Ed+1 → C, such as the Eisenstein series Ei;s, one can

try to form a representation of the group Ed+1 by using the right regular action under

g ∈ Ed+1:

η 7→ π(g)η , with
(
π(g)η

)
(Φ) = η(Φg) . (19)

As the discrete invariance acts on the left, the new function π(g)η inherits the same

invariance under Ed+1(Z). However, it will have different properties with respect to the

right-action of Kd+1. If the space of functions generated by the right regular action from

η

⟨π(g)η|g ∈ Ed+1⟩ (20)

satisfies good properties such as finiteness when decomposed with respect to the compact

Kd+1, the resulting space is called an automorphic representation. The precise definition

can be found for example in [26,1] but will not be central here.5

Automorphic representations are an important perspective on finding all represen-

tations of non-compact Lie groups, such as Ed+1(R). The automorphic representations

that Eisenstein series belong to are part of the principal series representations of such Lie

groups, obtained by induction from characters of parabolic subgroups, very much like the

construction in the previous section. We recall that an induced (smooth) representation

is defined by

Ind
Ed+1

Pi
χs = {f ∈ C∞(Ed+1) | f(pΦ) = χs(p)f(Φ) ∀p ∈ Pi} . (21)

Whether or not a given representation is unitary depends on the induction parame-

ter(s) s. We note that for the amplitude coefficients E(p,q) there is no requirement from

physics to belong to a unitary principal series representation. The function fχs in (16) is

a spherical vector in the space Ind
Ed+1

Pi
χs, meaning it is right-invariant under Kd+1, and

it is unique such vector up to scaling.

It is known that principal series representations for higher-rank Lie groups can develop

interesting submodules or quotients depending on the value of the induction parameters.

Automorphically, this is often referred to through the notion of residues of Eisenstein

series. Using this language we can say what is special about the particular functions

appearing in (18): They correspond to the induction parameters where the principal

series has a non-trivial submodule/subquotient of the smallest (for E(0,0)) or next-to-

smallest (for E(1,0)) Gelfand–Kirillov dimension [3,4]. The first one is known as theminimal

5Automorphic representations are normally formulated in an adelic setting. The function (16) can

be obtained by restricting its corresponding (rational) adelic version to archimedean arguments. Even

though this is the proper language for many statements, we will refrain from using it here.
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representation of a Lie group and has been studied in the literature, see for example [27]

and the next one can be referred to as the next-to-minimal representation. We will refer

to such representations more generally as small representations.

Automorphic forms attached to small representations can be characterized by having

very few non-vanishing Fourier coefficients. A simple example that illustrates this is given

by theta series. Consider the holomorphic theta series θ(τ) =
∑

n∈Z e
iπτn2

, where τ ∈ H,

the complex upper half plane. The square of this theta series famously has a Fourier

expansion of the form θ(τ)2 =
∑∞

k=1R2(k)e
2πikτ , where the coefficients R2(k) count the

number of ways in which k can be written as a sum of two squares. Indeed, the only

non-vanishing coefficients are those with positive mode number. The fact that so many

of the Fourier coefficients vanish is a trademark feature of small representations. In the

following we shall discuss Fourier coefficients in the context of more general automorphic

forms attached to small representations.

3 Physical information from the Fourier expansion

In the previous section, we have stated in (18) that certain parts of a string theory

scattering amplitude can be expressed in terms of special automorphic forms that belong

to small representations of the Lie group Ed+1. In this section we look at how to extract

physical information from this realisation. The key ingredient for this is the Fourier

expansion of the automorphic form.

We begin by looking at the simplest case where we can write the full expansion ex-

plicitly. This is the case of the rank-one Lie group E1
∼= SL(2). This is the original case

studied in [28] that triggered a large part of the research reported on here.

The symmetric space SL(2)/SO(2) is isomorphic to the Poincaré upper half-plane and

we denote the variable on it by Ω = Ω1 + iΩ2 with Ω2 > 0. The function E(0,0) is given

by6

E(0,0)(Ω) = 2ζ(3)E1;3/2(Ω) =
∑
m,n∈Z

(m,n)̸=(0,0)

Ω
3/2
2

|mΩ + n|3
(22)

= 2ζ(3)Ω
3/2
2 + 4ζ(2)Ω

−1/2
2 + 2π

∑
k ̸=0

√
|k|σ−2(k)e

−2π|k|Ω2+2πikΩ1 (1 +O(Ω2)) ,

where we have written out the Fourier expansion associated with the periodicity Ω → Ω+1

in the second line. The first two terms correspond to the Fourier zero mode (a.k.a.

constant term), while the infinite sum over k ̸= 0 are the non-zero Fourier modes. Here,

σs(n) =
∑

0<d|n d
s is the classical divisor sum.

6Since the function is spherical, we work on the quotient SL(2)/SO(2) rather than all of SL(2).
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As was mentioned before, there is a relation of the symmetric space variables to

physical parameters which here reads

Ω = C0 + ig−1
s , (23)

where C0 is known as the Ramond–Ramond axion.

Our interest lies first in the dependence on Ω2 = g−1
s . We see that the Fourier zero

mode only contains power-behaved terms of the string coupling. After a suitable conver-

sion7, one can check that these two terms correspond to the genus-zero and genus-one

contributions to the string scattering amplitude at this order in α′. The 2ζ(3) was al-

ready indicated in Figure 3 and the 4ζ(2) is associated with the dot just above it since

E(0,0) summarises the amplitude along this vertical axis. The absence of other power-

behaved terms means that there are no contributions to the scattering amplitude from

higher-genus Riemann surfaces which is a strong prediction from the Eisenstein series

and was subsequently understood as a so-called non-renormalisation theorem implied by

supersymmetry [29].

The non-zero Fourier modes in (22) all carry the factor

e−2π|k|Ω2+2πikΩ1 = e−2π|k|g−1
s +2πikC0 , (24)

which is the characteristic feature of a non-perturbative effect, namely that the Taylor

series around weak coupling gs ≈ 0 vanishes to all orders. Moreover, the phase coupling to

C0 is also characteristic for what is known as an instanton effect and in fact the non-zero

modes can be associated with so-called D-instantons in this case [28] that are ‘charged’

under C0 and the integer k is known as the instanton charge. The numerical coefficient

containing σ−2(k) is called the instanton measure and is also of interest in physics and

has been investigated using different techniques [30].

The above example shows that the Fourier expansion of E(p,q) reveals perturbative and
non-perturbative information about the scattering amplitude. The SL(2) example is a

bit too simple as there is only one cusp (Ω → i∞) and one shift symmetry Ω → Ω + 1.

For higher-rank Ed+1 there are more choices with a richer structure.

We recall that a Fourier coefficient of an automorphic form η is generally determined

by the following data8

• a choice of unitary subgroup U ⊂ Ed+1 which we take to be the unipotent radical

of a parabolic subgroup Q = LU ; the set of shift symmetries is U(Z), and

• a choice of unitary character ψ : U → U(1) that is trivial on U(Z); this defines the
‘Fourier mode’.

7This is related to a so-called change of frame from Einstein to string frame.
8More general definitions are possible, but this is sufficient for our purposes here.
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The Fourier coefficient is then given by the integral

Fψ[η](Φ) =

∫
U(Z)\U

η(uΦ)ψ(u)du . (25)

In general, U can be non-abelian and characters ψ are only sensitive to the abelian part

U/[U,U ]. Therefore, the expansion in terms of Fourier coefficients is in general incomplete:∑
ψ

Fψ[η](Φ) =

∫
[U,U ]

η(uΦ)du . (26)

Only when U is abelian, the sum of all Fourier coefficients equals the original function

η. For this reason, the coefficients (25) are sometimes referred to as abelian Fourier

coefficients. If one wants to obtain a complete expansion of η one has to supplement

them by non-abelian Fourier coefficients defined using characters of [U,U ] and potentially

higher members of the derived series.

In the case of SL(2) with variable Ω the integral in (25) becomes for ψ(Ω1) = e2πikΩ1

the conventional Fourier integral

Fψ[η](Φ) =

∫ 1

0

η(uΦ)e−2πikωdω , (27)

where

Φ =

(
Ω

1/2
2 Ω

−1/2
2 Ω1

0 Ω
−1/2
2

)
, u =

(
1 ω

0 1

)
(28)

would be standard parametrisations of the SL(2) group elements. Upon evaluating the

integral over ω one arrives at the Fourier coefficients for k ̸= 0 in (22).

3.1 Constant terms

A special and simple case arises for the trivial character ψ = 1. This corresponds to the

Fourier zero mode and the corresponding Fourier integral (25) in this case is then also

known as the constant term (along U). It depends only on the corresponding Levi variables

and the most well-studied case is that of the maximal unipotent when the dependence is

only on the Cartan torus of the Lie group and in fact for Eisenstein series there are closed

formulas due to Langlands that give the result of the constant term integral in terms of

intertwining operators [23]. For non-maximal unipotents U similar formulas exist and can

be found for example in [31].

These can be applied to the functions given in (18) and the results are given for

instance in [2, 1]. Of particular interest from a physical perspective are the following

choices of maximal parabolic subgroups Q = LU that can be characterised by which node

of the Ed+1 Dynkin diagram in Figure 4 is removed [32,2]:
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1) Removal of node 1; Levi GL(1) × Spin(d, d): This connects to string perturbation

theory as already anticipated in (10). The constant terms in this case correspond

to perturbative string calculations on Riemann surfaces and the non-perturbative

terms to D-instantons.

2) Removal of node 2; Levi GL(d + 1): This is the M-theory limit and the constant

terms correspond to perturbative calculations in toroidally compactified eleven-

dimensional supergravity. The non-zero Fourier modes are associated with mem-

brane instantons.

3) Removal of node d+1; Levi GL(1)×Ed: This is the decompactification limit where

one direction of the torus T d becomes large and the torus decompactifies to R×T d−1.

The non-zero Fourier modes capture properties of black holes in D + 1 dimensions

whose world-line wraps the special direction.

3.2 Fourier modes and wavefront set

The vanishing properties of the Fourier modes can be neatly summarised by the so-called

wavefront set, a notion that is familiar from (automorphic) representation theory (see

e.g. [33–36]).

Wavefront sets are associated with (automorphic) representations and consist of col-

lections of coadjoint9 nilpotent orbits in the Lie algebra ed+1. The connection to Fourier

coefficients of automorphic forms is via the unitary character ψ : U → U(1) entering

in (25). Since ψ is defined on a unipotent it can be written on an element u = exp(x) as

ψ(u) = exp (2πi ω(x)) , (29)

where ω ∈ u∗ and, because U is unipotent, the element ω is necessarily nilpotent.

There is an action of the group Ed+1 on the automorphic form and also on element ω,

the vanishing or not of a Fourier coefficient Fψ[η] depends actually not on ω, but only on

the nilpotent orbit Oω = Ed+1 · ω it belongs to. We consider the complexification of the

orbits and define the wavefront set WF [η] as

WF [η] =
{
nilpotent OC ∣∣ ∃ω ∈ OC : Fψ[η] ̸= 0

}
. (30)

The wavefront set is a property of a given automorphic representation although we have

defined it above for one of its members.

Complex nilpotent orbits have a partial order (see e.g. [37]) corresponding to Zariski

closure. An interesting question is then what the maximal orbits in the wavefront set of

9In all cases considered here, there is a non-degenerate invariant pairing that can be used to identify

elements of a Lie algebra with those of its dual.
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a given representation are. For irreducible representations it is known that the closely

related notion of associated variety is the closure of a single nilpotent orbit [38–40]. In

terms of the Fourier coefficients this means that there is a single most complicated type

of Fourier coefficient for a given automorphic representation.

The constant function has wavefront set given by the trivial orbit. The next possible

orbit is the minimal orbit which is unique. An associated representation is called a

minimal representation and it is precisely the one associated with the first function E(0,0)
appearing in the string four-graviton amplitude (14). The next bigger orbit is unique for

most groups and we call it the next-to-minimal orbit. An associated representation is the

one for the function E(1,0).
The different orbits also have an interpretation in terms of (space-time) supersymmetry

in string theory, more precisely, the amount of supersymmetry protection of a given

coupling in the effective action. While the supergravity action is fully supersymmetric,

the coupling R4 for the E(0,0) function is known as half-supersymmetric or 1
2
-BPS. The

next one E(1,0) for the D4R4 coupling is 1
4
-BPS. As the number of supersymmetries is finite

(=32) one cannot reduce the fraction indefinitely and we shall come back to this point in

Section 4.1.

3.3 Reduction algorithm

While the wavefront set records which Fourier coefficients vanish and which ones do not,

one might also be interested in the value of the non-vanishing coefficients. In physics, these

correspond to properties of instantons as mentioned above or to the counting (modulo

sign) of certain black hole microstates in the maximal parabolic 3) of the list in Section 3.1.

Actually carrying out the integral (25) becomes very difficult quickly. It is therefore

desirable to reduce it where possible to simpler known integrals. This was addressed

in [6,7] where the integral over U was rephrased in terms of sums or integrals of coefficients

associated with the maximal unipotent N using a reduction method. In this method the

integration domain is extended from U to N in a controlled way such that a finite number

of simple operations have to be performed in the process, leading to explicit final formulas.

The interest of the method is that the final answer is expressed in terms of coefficients

for the maximal unipotent N which we call Whittaker coefficients :

Wψ[η](Φ) =

∫
N(Z)\N

η(ng)ψ(n)dn . (31)

The unitary character ψ on N is not necessarily the same as the original one on U .

Whittaker coefficients (31) can be computed for Eisenstein series η using a reduction

formula for degenerate Whittaker vectors [41,42] that also uses intertwining operators.

For small representations there are again additional simplifications since many terms

vanish. Using the reduction algorithm of [6,7] one can show for example that for a minimal
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automorphic form ηmin and a minimal unipotent character ψ that is only non-zero on a

single simple root space one has

Fψ[ηmin] = Wψ[ηmin] , (32)

i.e., the integration domain and unitary character can be extended with impunity. For all

the groups Ed+1 the above coefficients have the same simple structure due to minimality.

Indeed, the Whittaker coefficient Wψ[ηmin] takes the form of a single divisor sum σs(k)

multiplied by a K-Bessel function. This mimics the structure of the Fourier coefficients

of the SL(2)-Eisenstein series (22).

Similarly, for a next-to-minimal automorphic form ηntm and a unitary character ψ on U

of rank two (Bala–Carter type 2A1) one can find an element γ ∈ Ed+1 such Ad∗
γψ = ψ2A1

with ψ2A1 being supported on two orthogonal simple root spaces. Then

Fψ[ηntm](Φ) =

∫
Vγ

Wψ2A1
[ηntm](vγΦ)dv , (33)

where Vγ is an adelic integration that is determined by U and γ. Again, for all the groups

Ed+1 these coefficients have a simple structure, that generalizes the minimal case. The

coefficients are all of the schematic form σs(k)σs′(k
′)
∫
KK, i.e. they involve a product of

divisor functions along with an integral over two K-Bessel functions [42,7].

In general, the formula is expressed as an adelic integral, and as such it maps Eulerian

coefficients to Eulerian coefficients [43].

4 Outlook

In this section, we discuss some of the many fascinating open problems. The reader is

again invited to consult [1–7] as well as the references given below for more details.

4.1 Beyond Z-finiteness

The first obvious point that we would like to address is what happens when going further

in the low-energy expansion, i.e., what happens for the next vertical lines in Figure 3, or,

equivalently, for the functions E(p,q) with values of (p, q) different from those in (18).

From physical supersymmetry considerations one expects these functions to obey

differential equations that are qualitatively different from the Z-finiteness conditions

like (17). For example, it has been known for some time that in the case of E1
∼= SL(2)

the function E(0,1) satisfies [19]

(∆− 12)E(0,1) = −E2
(0,0) , (34)
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Figure 5: Some nilpotent orbits in relation to terms in the string scattering amplitude. The

circled orbits in the Hasse diagram are not special.

where importantly the square of the (minimal) function E(0,0) appears on the right-hand

side of the equation. Similar equations for higher rank have been given in [22].

Acting multiple times with the Laplacian on E(0,1) generates a non-finite space, since

the square E2
(0,0) is not in a finite-dimensional representation of Z. Therefore, the cor-

responding automorphic form cannot belong to a standard automorphic representation

since one of the standard defining properties (Z-finiteness) is violated.

Nevertheless, it has been possible to solve (34) for SL(2) [5] and also for the general

Ed+1 case [44, 25, 45] and generalisations of such inhomogeneous Laplace equations have

attracted quite some interest and approaches with different methods [46–49].

Instead of displaying the solutions here which would require introducing quite some

notation, we comment on interesting qualitative features. Since the function is not Z-

finite, it must belong to a novel type of automorphic representation. How to define this

in a useful generality is currently an open problem, but examples similar to the one above

from string theory can be important guiding beacons.

One aspect where they clearly differ from the standard representation is in the wave-

front set. This is displayed in Figure 5 where in the left panel the function E(0,1) is

indicated by a red oval labeled ηn2tm for the next function after the next-to-minimal one.

In the right panel is the Hasse diagram of nilpotent orbits for the case of E7 that is

useful for indicating the wavefront set and the following statements are restricted to this

case. For the minimal and next-to-minimal case there is a single maximal orbit in the

wavefront set, corresponding to the orbits of Bala–Carter types A1 and 2A1, respectively.

By contrast, there are two maximal orbits for ηn2tm, namely (3A1)
′ and A2 that appear

because of the physical boundary conditions. This type of behaviour is not possible for

standard automorphic representations, but consistent with physical expectations where

the two orbits correspond to two distinct types of 1
8
-BPS states.
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A further intriguing feature of the solution is that the numerical value of some of the

explicit Fourier coefficients grows exponentially with the instanton charge, i.e., the norm

of the nilpotent element of the U-duality orbit. This is also in contrast with standard

behaviour of Fourier coefficients. Again, the exponential growth is actually expected from

physics where it relates to the counting of black hole microstates and the exponential

behaviour is required for obtaining a non-zero entropy.

We close these observations by pointing out that the reduction algorithm of [6] is

valid for functions irrespective of whether or not they are Z-finite. As the final result is in

terms of (degenerate) Whittaker coefficients that are only easy to determine for Eisenstein

series, the method is however not directly applicable to the end.

4.2 Further directions

We loosely list some additional interesting topics.

• The construction above relied heavily on toroidal compactifications of string theory.

While these have the most rigid mathematical structure, they are the least realistic

ones. A compactification scenario from ten to four space-time dimensions that

has been studied extensively is that where the torus T 6 is replaced by a complex

Calabi–Yau threefold. How much of the nice story of automorphic representations

and couplings survives in this case is not clear, although likely very little. It has

been proposed that at least in the setting of rigid Calabi–Yau threefolds, the relevant

automorphic forms would be attached to the so called quaternionic discrete series

[50–52, 1]. In recent years, the mathematical understanding of automorphic forms

attached to the quaternionic discrete series has been greatly developed due to the

works of Pollack and collaborators [53–56], following the original paper of Gan,

Gross and Savin [57].

• There are typically L-functions associated with automorphic forms and these enter

crucially in the Langlands conjectures. What is the physical interpretation of these

L-functions and do they exist also for the generalised automorphic forms starting

with E(0,1)? A possible physical interpretation of L-functions in the context of mirror

symmetry has been proposed in [58–60]. It would be very interesting to understand

whether there is any relation to the automorphic structures discussed in this survey.

• Is there an extension of the structures to the Kac–Moody case? Are there simi-

lar wavefront sets and small representations? First investigations seem to point in

this direction [61, 42]. It is well-known that due to the absence of a longest Weyl

word for Kac–Moody groups, the generic Whittaker coefficients identically vanish

for Kac–Moody groups [62]. The interesting Fourier coefficients are therefore degen-

erate Whittaker coefficients, i.e. those for which the unitary character ψN is only
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supported on a subset of the simple roots of Ed+1. It was shown in [42] that for

special values of s the only non-vanishing Whittaker coefficients of Eisenstein series

on the Kac–Moody groups E9, E10, E11 are those for which ψN is only non-trivial

on a single simple roots. This indicates that all Fourier coefficients are completely

determined by maximally degenerate Whittaker coefficients. This is a telltale sign

of a minimal representation. It would be very interesting to investigate this further

as a window into a possible theory of small representations of Kac–Moody groups.
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